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Abstrac[ — Maximum Time Interval Error (MTIE) is histori-
cally one of the main time-domain quantities for the specification
of clock stability requirements in telecommunications standards.
Nevertheless, plain computation of the MTIE standard estimator
proves cumbersome in most cases of practical interest, due to its
heavy computational weight. In this paper, MTIE is first intro-
duced according to its standard definition. Then, a fast algo-
rithm based on binary decomposition to compute the MTIE
standard estimator is described. The computational weight of
the binary decomposition algorithm is compared to that of the
estimator plain calculation, showing that the number of opera-
tions needed is reduced to a term proportional to N’log2N instead
of N’z. A heavy computational saving is therefore achieved, thus
making feasible MTIE evaluation based on even long sequences
of Time Error (TE) samples. The algorithm proposed is finally
applied to TE sequences generated by simulation of all the types
of power-law noise, in order to check its effectiveness and
correctness.

lr.vlex Terms — Clocks, digital communication, jitter, SONET,
synchronization, synchronous digital hierarchy, time domain
measurements.

I. INTRODUCTION

A major topic of discussion in standard bodies dealing with
network synchronization [1]—[4] is clock noise charac-

terization and measurement. Among the quantities considered
in international standards for specification of phase and tle-
quency stability requirements, the Maximum Time Interval
Error (MTIE) has played historically a major role for
characterizing time and frequency performance in digital
telecommunications networks [5]—[ 12], as specifications in
terms of MTIE are well suited to support the design of

equipment buffer size.
In this paper, MTIE is first introduced according to its

formal definition. Then, the main issue of its experimental
measurement is pointed out the heavy computational weight
in most cases of practical interest, due to the number of

operations nested in the direct, plain calculation of the MTIE
standard estimator. Therefore, a fast algorithm to compute the
MTIE standard estimator is described, thus making feasible
MTIE evaluation based on even long sequences of Time Error
(TE) samples. The computational weight of this fast algo-
rithm is compared to that of the estimator plain calculation.
Finally, the algorithm proposed is applied to TE sequences

generated by simulation of all the types of power-law noise,
in order to check its effectiveness and correctness.

II. DEFINITIONOF MTIE

A thorough treatment of MTIE ancl of its properties can be
found in [13]. Further specific analyses are reported in
[14][1 5]. Here, solely the main definitions are summarized for
the sake of understanding and to provide the reader with the
background concepts.

A general expression describing a pseudo-periodic wave-
form which models the timing signal s(t) at the clock output is

given by[16]—[18]

s(t) = Asin CD(t) (1)

where A is the peak amplitude and Q(t) is the total

instantaneous phase, expressing the ideal linear phase
increasing with t and any frequency dritl or random phase
fluctuation.

The generated Time function T(t) of a clock is defined, in
terms of its total instantaneous phase, as

T(t) = #-
nom

(2)

where V~O,~represents the oscillator nominal frequency. It is
worthwhile noticing that for an ideal clock T,d(t)=t holds, as
expected. For a given clock, the Time Error function TE(t) (in
standards also called x(t) ) between its time T(t) and a
reference time Tre{t) is defined as

x(t) = TE(t) = T(t) -T,e{t) (3).

The Maximum Time Interval Ervor function MTIE( T,T) is
the maximum peak-to-peak variation of TE in all the possible
observation intervals r (in former standards [5] [6] denoted as
5’) within a measurement period T (see Fig. 1) and is defined
as

MTIE(~, T) = max
{ 1

max [TE(t)]- min [TE(t)] (4).
O<to<T-r t,,<tSi(,+r ((,<w,, +Z

0-7803-5287-4/99/$10.00 (c) 1999 IEEE



observation intewal
4 ‘t ●

I
●

1“ T i
t

measurement period

Fig. 1. Definition of MTIE(L T).

It should be noted, however, that the standards in force
specify the MTIE limits simply as a function of r (or S), thus
implicitly assuming

MTIE(z) = Iim MTIE(r, T) (5)
r+.

III. MEASURINGMTIE

MTIE measurement is usually based on the time-domain
measurement of the TE process x(t) between the output of the
Clock Under Test (CUT) and a reference timing signal, which
may be its input if the CUT is a slave clock (synchronized
clocks configuration), or the output of a second Reference

Clock if the CUT is a ffee-running clock (independent clocks

configuration) [7][11]. Sequences of TE samples {xi}, defined
as

x, =x(to +(i–l)ro) i = 1,2,3,... (6)

where tois the initial observation time and rOis the sampling
period, are measured using digital counters and stored for
numerical post-processing over a total measurement period 7’
[12] [13]. The samples x, are typically measured between two

corresponding zero-crossings of the timing signals involved.
Starting from the sequence {x,} of TE samples measured,

the definition (4) may be applied directly to compute
MTIE(r,~. Letting NT.=Z7rO+l be the total number of
available samples and N,= r/rO+l be the number of samples
available in a window (observation interval) of span r, for
each single value MTIE( r, T ) the following expression has to
be computed

[

NT–NC+l N,+,/–l N,+/-l
MTIE(IT, T) = max max (xi) – min (x, )1 (7).

,=1 ,=j j=]

The above is the MTIE standard estimator recommended in
[7][11].

MTIE masks currently specified in standards span over a
wide range of c four decades, namely from 10-1 s up to 102 s.
For a long time this range was even wider, from a few

milliseconds up to 105 s, Furthermore, more specific studies
may require investigation over different wide ranges.

AS pointed out in [13], the number of samples NT to

process gets easily to the order of 10s in most cases of
practical interest, if we are interested in a somehow accurate
characterization of the clock noise. It obviously appears that
the plain computation of the estimatcu- (7) is unadvisable and
quickly tends to be unmanageable, due to the number of

operations nested in evaluation loops. Hence the need of
contriving a suitable algorithm effective in cutting down the
computational weight of a plain implementation of the
estimator (7).

IV. MTIE COMPUTATION BY BINARY DECOMPOSITION

The fast algorithm proposed in this paper is based on a
binary decomposition of a TE sequence {xi} made of
N~=2kMAXsamples in nested windows made of Nzz2k samples
(k=l, 2,3,..., k~x). MTIE can be then evaluated recursively
for each window size 2k.

As first step (&l), all the possible 2-points windows (firO)
are analyzed in the TE sequence: for each of them, the
maximum and minimum values are stored. Their difference is
the MTIE( TO)measured in that window and the maximum of
the MTIE values of all the 2-points windows is the resulting

MTIE(rO,T) of the whole sequence. At this first step, there is
no computational saving yet compared to the plain computa-
tion of the standard estimator.

Then, as second step (k=2), all the possible 4-points win-

dows (F3 rO) are considered. The maximum and minimum
values of each of these windows can be obtained by compar-
ing the maximum and minimum values of the two 2-points
windows in which the 4-points window can be split. The
difference between the maximum of the two maxima and the
minimum of the two minima is the MTIE(3 CO)measured in
that 4-point window. The maximum c)f the MTIE values of all
the 4-point windows is the resulting MTIE(3 rO,Z’) of the

whole sequence.
The next step (k=3) is to consider all the possible 8-points

windows ( ~7 TO),split in two 4-points windows. Then so on

for increasing integer values of k. The computational saving
of this algorithm, compared to the plain computation of the
standard estimator, lies in avoiding the comparison of all the
samples in the windows of size larger then 2. The price to pay
is that we have to limit the evaluation of MTIE( r, T) just to the
logzN~ values corresponding to the ‘windows made of NZ=2k

samples (this corresponds to a bit more than three MTIE
values per decade on the ~ axis, which may be considered

sufficient in most practical applications).
More formally, starting from the TE sequence vector x

made of N~=2kM&XTE samples xi, two matrices AM and A,n are
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built. Matrices are made of N7rl columns (indexed by i) and

logJV~ rows, indexed by k. The first Nr2k+1 elements of each

k-th row of the matrix AM contain the maximum values of all

the possible 2~-points windows sliding from left to right along
the TE sequence {x,}. The matrix A,n contains, in an

analogous fashion, the corresponding minimum values of the
2k-points windows. Therefore, the set of all the possible 2k-
points windows in the whole TE sequence is completely

described by the couple of vectors

V. COMPUTATIONAL SAVING

The number of operations involved in the estimator plain

computation and in the binary decomposition algorithm has

been evaluated, in order to assess the resulting computational
saving.

A. Plain Computation of the Estimator

As fiir as a plain computation of the estimator (7) is
concerned, three nested loops can be identified:

HaM/k = ‘Mjk,i
i=l,2 ,..., N2k+l+l (8) 1)

am/k = am/k,i

where a~,k and a,~k are the k-th rows taken from the matrices 2)
AM and A,,, respectively.

The first row (k= 1) of matrices AM and A,n is obtained

directly by the TE sequence vector x as 3)

aM/l,i ()= max xi, Xj+l
(9)

am/l,r = min(xj, X1+l)

for i=l, 2, .... NT. 1. Next rows (E-1), instead, are obtained
recursively as

an external loop increasing the observation interval r,
executed one time per each single value MTIE(r, T) to
compute;
a first internal loop executed, given ~, for each N<
points sliding window (the external max[.] function in

(7) ), i.e. N~-N,+l times;
the most internal loop to find the maximum and

minimum value in a set of N, samples, thus involving
2(NF1) comparison test branches and a variable number

of assignments according to the particular TE sequence
(we neglect here the possibility to use a more efficient
algorithm to extract the maximum and minimum
values),

(a~Jk,J = max ak–l,; 3 ak–l,i+p )
If we limit MTIE computation to one value per octave on

“( )
(10) the 7 axis, as in the binary decomposition algorithm, then the

alnlk,,=mln ak–l,l,ak–I,l+p
first loop is executed kwx= logzN~ times, the second 100P

where n=2k-1. for i=l. 2 ..... N7-2k+l. N~.2k+l times (k=l, 2,..., kwx) and the third loop involves

Fin~Hy, the value’ MTIE{z,T) for F(NF 1) ZO and NZ=2k 2k+1-2 branches ‘hus~ ‘he

(here denoted as MTIEk for the sake of brevity) can be approximately (horn now on,
evaluated from the k-th rows of the matrices AM and A,. as for the sake of brevity):

MTIEk =
=1 ..~-2’+l~aM/k>’ ‘a*n/k>;)

(11). 42
~N +...,>

An example of binary decomposition tree, applied on a TE
3(Nlogz N–2N)+...
22

sequence {x, } made of Nr=l 6 samples (kw=4), is shown in TN i-...
Fig. 2, which depicts the four cOUpleS of Vectors a~k and alnlk

(for k=l, 2,3, 4) built recursively starting fi-om the TE vector
Nlogz N–2N+...

x.

i 12345678910111213 141516

k=l

x

aM/1

anti 1

Comparison test branches
operations.

computational weight results

NT will be denoted simply as N

comparison test branches

assigmnents (best case) (12).

assignments (worst case)

additions

are the most time-consuming

It is worthwhile noticing that MTIE plain computation
turned out to be a I&problem because we decided to limit
MTIE computation to one value per octave on the r axis. If

T=lT[) MTIE is computed for all the possible N-1 values of r, then
~=1 the number of operations required gets proportional to @

instead.

k=2
aM/2 T=3T()

ad2
P=2

B. Binary Decomposition Algorithm

As far as the binary decomposition algorithm is concerned,
k=3

a M/3 ‘r=7U)

ailm ~=4 on the other hand, the following loops can be identified:
1) a first loop initializing the first row (k=l) of matrices

a M/4 T=l570 AM and A,n and then computing MTIE1, involving
1(=4

a,,v4
~=g among the rest 2(N- 1) comparison test branches;

2) a second main loop increasing the row index k (D 1),
Fig. 2. Example of execution of the binary decomposition algorithm (NT=16). executed log2N- 1 times;
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Fig. 3. Number of comparison test branches required by the MTIE estimator plain computation and the binary decomposition algorithm as a function of
the total number of TE samples N.

3) a loop, internal to the previous one, to compute the next

rows (b 1) of matrices AM and A,n and to evaluate the
corresponding MTIE~, involving among the rest

3(N-2k+l ) comparison test branches.
Thus, the computational weight results approximately:

3NIog2N–7N +... comparison test branches

2N+...
ass$ment’ ‘best case) (13).

3(N Iogz N – 2N)+... assignments (worst case)

Nlog~N–2N+... additions

C. Comparison in Terms of Computational Weight

It is worthwhile noticing that, in the binary decomposition
algorithm, the number of comparison test branches and worst-
case assignments needed has been reduced to a term
proportional to NlogzN instead of the ~ involved in the plain
computation of the estimator (7).

The graph of Fig. 3 compares, on a logarithmic scale, the
number of comparison test branches needed by the two algo-
rithms considered as a function of the total number of avail-
able TE samples N, for 21QV<225 (to build this graph, all the
lower-order terms not shown in (12) and(13) have been taken

into account). Moreover, the ratio between the two numbers

(i.e., the computational saving factor) is plotted as well for
ease of comparison. It may be noticed that in the most com-
mon range 214sNs219 (i.e., 16.3 84=s524.288) the saving
factor turns out to be in the remarkable order of 103+104.

VI. EXAMPLEOF ALGORITHMEXECUTION
ONPOWER-LAWNOISE TIME ERROR SEQUENCES

In order to check the effectiveness and correctness of the

proposed algorithm, both the estimator plain computation and

the binary decomposition algorithm have been applied to TE

sequences generated by simulation of the so-called power-law

noise [17] [18], the model most frequently used to represent
clock output phase noise in the tlequency domain. In terms of
the one-sided Power Spectral Density (PSD) of x(t), such
model is expressed by

where the h.2, h.l, ho, h+l and h+2 coefficients are device-
dependent parameters 1 and j, is an upper cut-off fi-equency,

mainly depending on low-pass filtering in the oscillator and in
its output buffer amplifier. The noise types of the model (14)
are: White Phase Modulation (WPM) for FO, Flicker Phase
Modulation (FPM) for ~-1, White Frequency Modulation
(WFM) for 0s-2, Flicker Frequency Modulation (FFM) for
--3 and Random Walk Frequency Modulation (RWFM) for
W-4

First, in order to simulate WPM (a=O) noise, two white and

uniformly distributed pseudo-random sequences of length
N=217=l 31072 were generated. Then, applying a well-known
transformation formula [19] [20], one white Gaussian pseudo-
random sequence of the same length was obtained, thus
approximating a WPM noise. Spectral shaping was
accomplished by filtering in the Fourier domain the WPM
(GO) noise sequence through integrators of fractional order
-cz/2 [21], having transfer function H.d2(f)=K(j2nj) ti2, to
generate the FPM (m-l), WFM (tE-2), FFM (w-3) and

1 The reason of the subscript CY+2(Q=-4,-3,-2,-1,0) is that, historically, the
coefficients h-2,h. ~, ho, h+l, A+2have been used in the power-law model
definition in terms of the PSD $,(l) of the random fractional frequency
deviationy(t)=cLx(t)/di.The relationship .SY(f)=(2rTj)2S,(f)holds [17].

0-7803-5287-4/99/$10.00 (c) 1999 IEEE



RWFM (H-4) noise sequences of the same length according
to the power-law model (14).

The MTIE values computed with the two algorithms,

starting from the five TE sequences generated as above, are
plotted in Fig. 4. As expected, MTIE values computed

through the estimator plain computation and the binary
decomposition algorithm are the same. Therefore, actually
just one curve has been plotted per each type of noise instead

of two (one per algorithm).

1,0E+02 I I

1,OE+OI

1,OE+OO
~

; I,OE-01

L

i,OE-03V
+ WPM

+ FPM

-4- WFM

-0- FFM

+ R WFM

1,0,-04 ~

Fig. 4. MTIE values computed through the estimator plain computation and
the binrrrydecomposition algorithm on power-law noise simulated TE

sequences (N=217=131072).

VII. CONCLUSIONS

In this paper, a fast algorithm based on binary decomposi-
tion to calculate the MTIE standard estimator was proposed.
The computational weight of the binary decomposition algo-
rithm was compared to that of the estimator plain computa-
tion. Moreover, the algorithm proposed was applied to TE
sequences generated by simulation of power-law noise, in
order to check its effectiveness and correctness.

The proposed algorithm proved effective in achieving a

strong computational saving, by reducing the number of com-
parison test branches and worst-case assignments needed to a
term proportional to NloglN instead of W (see the graph in
Fig. 3), There fore, this binary decomposition algorithm makes

feasible MTIE evaluation based on even long sequences of
TE samples and may be successfully applied by telecommu-
nications engineers involved in time-domain measurement of
clock stability.
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