
Synchronization of Single-Frequency Simulcast
Networks Using Network Time Protocol

Stefano Bregni*, Senior Member, IEEE, Luciano Lacavalla*,
Bruno Propersi*, Francesco Residori**, Member, IEEE

* Politecnico di Milano, Dept. of Electronics and Information, Piazza Leonardo Da Vinci 32, 20133 Milano, ITALY
Tel.: +39-02-2399.3503 – Fax: +39-02-2399.3413 – E-mail: bregni@elet.polimi.it

** SELEX Communications Prod-El S.p.A., Via Palmanova 185, 20132 Milano, ITALY
Tel.: +39-02-25928.229 – Fax: +39-02-26300802 – E-mail: f.residori@prod-el.com

Abstract  Single-frequency simulcast networks use two or
more Radio Base Stations (RBS) to transmit simultaneously the
same signal on the same radio channel over the service area. To
ensure correct operation and good performance, simulcast net-
works need accurate time and frequency synchronization. In this
work, we designed a system for synchronizing RBS clocks by way
of Network Time Protocol (NTP) packets. The goal is to allow si-
mulcast operation when external sources of synchronization, such
as GPS, are not available or when the operator prefers to distrib-
ute timing alternatively, in particular by IP network facilities
used for data transport. Time stamps are disseminated by a mas-
ter RBS and used in slave stations to steer local clocks. The
mechanism proposed was modelled, simulated and implemented
in an experimental prototype. Simulation and experimental
measurement results meet requirements and demonstrate the
practical feasibility of this approach for commercial application.

Index Terms  Digital radio, land mobile radio cellular sys-
tems, radio broadcasting, synchronization, time dissemination.

I. INTRODUCTION
arge coverage and spectral efficiency are significant char-
acteristics in Private Mobile Radio (PMR) and Public Ac-

cess Mobile Radio (PAMR) applications, in particular security
and public utilities. A solution is given by simulcast networks,
in which radio transmitters broadcast the same analog or digi-
tal FM signal [1][5]. Examples of digital systems for PMR
are the Trans-European Trunk Radio (TETRA) [6], Digital
Mobile Radio (DMR) [7], MPT 1327 signalling systems (au-
dio sub carrier FSK + FM) [8], paging systems (POCSAG,
ERMES), Personal Communication Systems (PCS).

In this paper, the interest is on FM analogue modulation
(with channel spacing 12.5 kHz / 25 kHz) and on DMR digital
modulation [7]. This is an ETSI standard for digital voice and
data services, based on 4-FSK to achieve the bit rate 9600 bit/s
with 12.5 kHz channel spacing and two time slot TDMA.

As shown in Fig. 1, single-frequency simulcast networks
use two or more Radio Base Stations (RBS) to transmit simul-
taneously the same signal on the same radio channel over the
service area. Downlink, a master station (RBS #1 in Fig. 1)
covers its area and uses other slave stations (RBS # 2, 3, 4 and
5) to improve the coverage. Uplink, the master station selects
by majority voting the best received signal from different radio
stations.

The links between stations may be UHF radio, cable (4
wires), digital circuits across Plesiochronous Digital Hierarchy

(PDH), Synchronous Digital Hierarchy (SDH) or switched In-
tegrated Services Digital Network (ISDN) systems. A further
possibility is connecting stations across an IP network.

In simulcast systems, signals with comparable levels, re-
ceived from two or more RBSs in an overlapping area, cause
quality degradation (i.e., higher Bit Error Rate, BER, in digital
signals or worse signal-to-noise ratio in analogue signals).
Moreover, frequency offset between RBSs causes both fades
and clicks [9]. Reduction of amplitude imbalance increases the
click amplitude.

In digital frequency modulation, a discriminator-based re-
ceiver exhibits a BER floor in a multipath fading and/or si-
mulcast environment. This floor increases with speed of
movement, frequency offset of transmitters and decrease of
amplitude imbalance of the simulcast signal [10].

The delay difference among broadcasted signals, due to dif-
ferent transmission line lengths between stations, severely de-
grades system performance. Thus, adequate delay equalization
among RBSs is required [11].

Simulcast networks are specified by ITU-R Rec. M.1077
[12]. ITU-R also specifies minimal synchronization operative
conditions for acceptable system performance. Frequency syn-
chronization requirements, for correct operation of simulcast
networks, are specified in terms of maximum RF frequency
offset between RBSs:
• 2 Hz in the VHF band (equivalent to 1.25⋅10-8 fractional

frequency offset at 160 MHz);
• 1 Hz in the UHF band (2⋅10-9 at 450 MHz).
The maximum offset 6 Hz should be never exceeded (equiva-
lent to 3.75⋅10-8 at 160 MHz and to 1.33⋅10-8 at 450 MHz).
Moreover, time synchronization requirements are:
• 5 µs for analog signals;
• Ts/10 for digital signals;

RBS #1

F1

F2

F1

F2

F1

F2

F1

F2

F1
F2

F1
F2

F1
F2

F1
F2

F1
F2

UHF
radiolink

UHF
radiolink

PDH/SDH
/ISDN link

PDH/SDH
/ISDN link

PDH/SDH
/ISDN link

PDH/SDH
/ISDN link

RBS #5

RBS #4

RBS #2

RBS #3
Fig. 1: Example of simulcast network.

L

1-4244-0353-7/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

where Ts is the symbol duration. These limits were found by
long term simulcast trials to optimize system performance.

Synchronization of RBSs, in order to compensate different
link delays, may be easily achieved by Global Positioning Sys-
tem (GPS) or similar systems. In spite of this, there is much
interest among manufacturers for engineering alternative
mechanisms of time distribution. In actual fact, many network
operators outside America do not accept to deploy network
systems that are depending on GPS availability for optimal
performance. Main grounds are unwillingness to depend on
decisions of a foreign administration and the fact that the GPS
signal may be not available continuously and in all sites (e.g.,
in tunnels or close to TV/radio broadcasting antennas). Hence,
the interest for designing alternative mechanisms for time dis-
tribution, in particular across data links connecting RBSs.

Over PDH/SDH links or circuit-switched networks, the
transmission delay varies negligibly with time (mainly due to
wander [13]) and thus can be easily measured and compen-
sated. Network synchronization is more difficult when RBSs
are connected over a packet-switched network (e.g., over IP).
In this case, the transport delay varies significantly with time,
depending on network congestion, the number of hops, etc.

The goal of this work is to study a mechanism to steer
clocks of simulcast stations, by distributing the master station
clock reference to all others, when RBSs are linked through an
IP geographic or local network.

Network Time Protocol (NTP) is the standard protocol for
time dissemination over the Internet. Developed by D. L. Mills
[14][18], it allows to distribute time information from the
master clock by way of IP packets. NTP packets are sent by
the master under client request. Each NTP packet carries time-
stamps, used to estimate the time difference between master
and client clocks. The NTP server clock provides an absolute
reference for the NTP clients. NTP performance in terms of
timing accuracy achievable is astonishingly good, considering
the jitter that affects IP packets forwarded through the Internet.
This information can be used to correct the time offset be-
tween RBSs and to synchronize them in time and frequency.

Therefore, at Prod-El, we designed a NTP-based synchroni-
zation system of Simulcast RBSs connected via an IP network.
This system was modelled, simulated and implemented in an
experimental prototype. Simulation and experimental results
meet requirements and demonstrate the practical feasibility of
this approach for application in commercial systems. Experi-
mentation on the prototype, on the other hand, was also useful
to reveal implementation pitfalls.

This paper is organized as follows. Sec. II outlines the sys-
tem architecture and model. Sec. III presents some simulation
results. Sec. IV illustrates the prototype, provides a few details
about hardware and firmware implementation and shows
measurement results. Finally, Sec. V draws some conclusions.

NTP
packets

F(z) OCXO
O(z)

NTP client
Phase

Comparator

Θ (Tn) V(Tn) y(t)

Fig. 2: PLL model of RBS synchronization by NTP.

II. SYSTEM ARCHITECTURE AND MODEL
Each RBS has an internal software clock [19], with the ref-

erence frequency obtained from an Oven Controlled Crystal
Oscillator (OCXO), with fractional frequency accuracy on the
order of 10-6 within a wide temperature working range from
-20°C to +70°C.

Network synchronization is achieved according to the well-
known Hierarchical Master Slave strategy. This strategy is
based on the distribution of the timing reference from one
clock (master clock) to all the other clocks of the network
(slave clocks), directly or indirectly, according to a star (two-
level) or tree (multi-level) topology.

In our architecture, the master station acts as NTP server
(reference) and slave stations as NTP clients. Periodically, at a
given polling time, clients send NTP request packets to the
server and wait for response packets. From time stamps read
in response packets, clients estimate the round trip time and
thus the master clock time. From this information, they can es-
timate their clock delay and frequency offset.

Therefore, at approximately each polling time (the response
packet arrival time varies, depending on the network traffic
and the number of hops), the client can estimate its time offset
and drift, by comparing the server clock to the local one. To
adjust the software clock, the client actually tunes the fre-
quency of the OCXO, by acting on its control voltage.

This mechanism is basically a Phase-Locked Loop (PLL)
[13], in which the NTP client has the role of phase comparator.
This is a discrete-time system, timed by the polling period T
(phase error is computed when the NTP response packet ar-
rives). We decided to design a 3rd-order, type-2 PLL. A type-2
PLL has an integrator in the loop filter and is able to track in-
put frequency steps with null residual phase error.

The choice of the polling period T (system sampling time)
can be critical. A long polling period slows down synchroniza-
tion convergence, while a short polling period can affect loop
stability. Moreover, a short polling period could improve phase
tracking precision, but the IP network might be also exces-
sively loaded by NTP traffic. We believe that the correct
choice depends on the specific case. In our prototype system,
the polling period can be set by software control.

A model of this RBS synchronization system is shown in
Fig. 2. Transfer functions are given in the z domain, as we deal
with a discrete-time system. At each sample of clock offset
Θ(Tn), the filter F(z) returns a sample V(Tn) to tune the fre-
quency of the RBS OXCO, which outputs the periodic timing
signal y(t). The type-2 PLL filter transfer function is given by:

)(
)(

)1(
)(1

p

z

zz
zz

z
zGzF

−
−

−
= (1)

where zz and zp are the zero and pole values, respectively, and
G1 is the filter gain. Parameters are designed to ensure system
stability. Thus, the PLL open-loop transfer function is:

)(
)(

)1(
)()()(2

2

2
p

z

zz
zz

z
zGzOzFzL

−
−

−
=⋅= (2).

As far as convergence speed is concerned, a wideband L(z)
is faster than a narrowband one, but it tracks input asymptoti-

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

cally with less precision, after the transient is completed. To
speed-up convergence, the so-called Gear Shifting method is
used. At the beginning, a fast transfer function is used, in order
to achieve convergence rapidly. Subsequently, after coarse
synchronization has been acquired, the system switches to a
slow transfer function to attain the precision required.

The filter is switched when the phase error, measured by the
NTP client, becomes smaller than a fixed threshold. Should
the input phase error become unexpectedly large, e.g. due to IP
network congestion, the filter switches back to the wideband
one, in order to speed-up reacquisition.

III. SIMULATION RESULTS
The system described in the previous section has been simu-

lated in Matlab Simulink®, for feasibility and performance
evaluation before designing a hardware prototype.

The simulation model is shown in Fig. 3. Every block is
sampled with sample time T, the polling period of our system.
The RBS NTP server block is the base station with its OCXO
reference clock that acts as NTP server. The RBS NTP client
receives NTP packets, processes them and calculates the time
offset offset(Tn) respect to the local clock (clock counter).

The value computed by the NTP client is passed to the filter
F(z), which outputs Vtune(Tn), which controls the OCXO fre-
quency. The OCXO block outputs the periodic signal

 () () 



 ++= ∫ ϕπ

t
OCXOcc dttVtuneKtfAty

0
2cos (3)

where Ac is the output amplitude, fc is OCXO free running fre-
quency, KOCXO is the OCXO control sensitivity and ϕ is the
initial phase. The OCXO block output is used to increase the
local clock counter, whose output is looped into the NTP
block. The polling block is used to sample the NTP phase de-
tector at each polling time T.

The noise block adds noise to the input signal given by the
NTP server. White Gaussian noise was used to evaluate the fil-
ter and to calibrate its parameters. Note that the NTP algo-
rithm, when calculating the time offset between client and
server, is affected by various noise contributions, like time-
stamps detection, measure errors and variable network delay.

Examples of simulation results are shown in Fig. 4, where
offset(Tn) and Vtune(Tn) are plotted when the NTP reference
time is perturbed by additive white Gaussian noise with devia-
tion σn = 20 µs and by an initial frequency step ∆f = 10-6 (cli-
ent slower than server). Initial time offset was set to zero. In
the second graph, moreover, the plot of Vtune(Tn) exhibits evi-
dence of the mentioned Gear Shifting method, after nearly
2800 seconds. In the first phase, the wideband filter achieves
fast but course convergence, then the system switches to the
slow filter, which improves acquisition accuracy.

Table 1: Time needed to converge within ±1 Hz of frequency error.

Noise standard
deviation

Fast filter
-3dB bandwidth

Slow filter
-3dB bandwidth

Time of
convergence

σn = 20 µs 4.4⋅10-1 rad/s 1.4⋅10-1 rad/s 1h
σn = 100 µs 2.3⋅10-2 rad/s 7.6⋅10-3 rad/s 2h 40min
σn = 500 µs 4.6⋅10-3 rad/s 1.5⋅10-3 rad/s 8h 50min

RBS NTP
server

OCXO

Noise

+ RBS NTP
client F(z)

clock
counter

counter
for polling

NTP
packet

NTP
packet offset(Tn) y(t)Vtune(Tn)

OCXO

Fig. 3: Simulation model.

Fig. 4: Offset(Tn) and Vtune(Tn) with white Gaussian noise added to NTP

reference time (σn=20 µs, initial freq. offset ∆f=10-6, sampling period T=1s).

Let us notice that Vtune(Tn) fluctuations around the mean
value are proportional to the frequency error with respect to
the input value. For example, in the second graph of Fig. 4,
Vtune(Tn) keeps approximately in range ±0.005 V around the
mean value after a transient of about 3000 s. This corresponds
to ±0.9 Hz of absolute frequency error (well below limits
specified by ITU-R [12]).

Moreover, Table 1 presents some other performance figures,
in terms of the time needed by the simulated system to con-
verge within ±1 Hz of frequency error, for various values of
system parameters. Bandwidth values (-3dB) of fast and slow
filters were chosen by optimizing system performance.

IV. EXPERIMENTAL PROTOTYPE
This section illustrates the experimental prototype realized

by Prod-El for synchronizing two RBSs using Simple Network
Time Protocol (SNTP) [20], a simplified version of NTP. The
SNTP packet is identical to the NTP packet. Both NTP and
SNTP use UDP/IP on door 123.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

LAN /
WAN

PPS

µPDSP DSP
NTP
µP

Server RBS Client RBS

Vtune
GPS

Fig. 5: Two RBSs connected via LAN or WAN.

Fig. 6: The prototype RBS module board implementing the NTP

synchronization algorithm. Note the OCXO in the right low corner.

A. Outline of the Hardware and Firmware
The prototype is made of two identical board cards, one act-

ing as SNTP server and one as SNTP client, as shown in Fig.
5. The board connects a microprocessor (µP) [21], a DSP,
memory, an Oven Controlled Oscillator (OCXO), a LAN
Ethernet controller and a LAN port. The board is connected
via a 60-pins connector and a back panel to other boards (e.g.:
transceiver, E1/T1 interface, 4-wire interface, power supply).
A photo of the prototype board is shown in Fig. 6.

The SNTP client and server routines run on the microproc-
essor, over a Micro-Controller Linux (µCLinux) kernel. This
is an open source Real-Time Operating System (RTOS), which
works on µPs without Memory Management Units (mostly
used in embedded systems). The RTOS manages the µP, a
LAN Ethernet port, a Queue Serial Peripheral Interface (QSPI)
connecting the µP to the DSP and a serial port.

The SNTP server uses GPS as time reference. A SNTP cli-
ent does not distinguish between a NTP or SNTP server;
unlike NTP clients, it tracks only one server.

The scheme of operation of the client board is shown in Fig.
7. The client exchanges NTP packets with the server by a poll-
ing interval T = 1 s (system sampling interval). When the cli-
ent receives a packet, it calculates the Round Trip Time (RTT)
and the system clock offset. These data may be passed to the
function adjtime(), which adjusts the RTOS clock by small
steps, or to the function settimeofday(), which resets it. The
RTOS clock thus achieves a time accuracy of some µs.

This synchronization algorithm, nevertheless, proved not
sufficient to attain satisfactory frequency stability. Thus, the
system was improved. The output of functions, after digital-to-
analog (D/A) conversion, tunes an OCXO. Therefore, the sys-
tem works as a PLL, which is implemented partly by software

M
IC

R
O

-
P

R
O

C
ES

SO
R

NTP client
offsetµP time

clock

internal
bus

DSP
Vtune [bit]

Clock [Volt]

H
W

 P
LL

re
fe

re
nc

e
cl

oc
k

Vtune [bit]

Clock [Volt]

Vtune [bit]

calculation

Reference Clock [Volt]

OCXO

software
digital PLL

D/A
converter

NTP
SERVER

LAN /
WAN

Fig. 7: Scheme of operation of the NTP client board.

LA
N

P H
Y

D/A

OCXO Vtune

data
QSPI

DSP
RX

TX

board #1 - core

board #2 – RF transceiver

LA
N

Dr
ive

r

SNTP Vtune

Data

µP Clk

FIFO

D/A Driver
DSP Clk

da
ta

 b
us

Fig. 8: Hardware block scheme of the RBS.

and partly by hardware. In summary, this system synchronizes
in time the RTOS software clock and synchronizes in fre-
quency the OCXO.

More in detail, the hardware block scheme of the RBS is
outlined in Fig. 8, which shows two boards (board #1 - core
and board #2 - RF transceiver) connected by a data bus.

In the board #1, the microprocessor first runs the LAN
driver and the routine that distinguishes between data (e.g.,
voice, signalling, …) and NTP packets. If an NTP packet is
recognized, SNTP routines estimate Vtune, which is converted
by the D/A to tune the OCXO. If a data packet is recognized,
this is sent to the DSP, which converts the packet flow in a
constant-bit-rate flow and vice versa. Data are then sent to
other boards (e.g., in Fig. 8, the RF transceiver), not described
because outside the scope of this paper.

The OCXO is the reference clock for the DSP, the micro-
processor and the software clock of the NTP algorithm. It is
also used to generate the RF carrier in the RF transceiver.

The RTOS software clock is controlled by the µP hardware
frequency. Inside the µP, a timer is incremented at clock fre-
quency. When the timer reaches a fixed value, an internal in-
terrupt (tick) is generated by the RTOS, which increments the
software clock. In this way, the software clock is directly con-
trolled by the OCXO frequency.

SNTP evaluates the difference between the server and client
clocks and then the time offset. After the SNTP client query,
this information allows calculating the difference between the
frequencies of the two software clocks and, proportionally, be-
tween the OCXO frequencies.

The flowchart of this algorithm is shown in Fig. 9.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

Fig. 9: Flowchart of the software synchronization algorithm.

t [10×s]

V
tu

ne
[V

]

t [10×s]

V
tu

ne
[V

]

Fig. 10: Example of measurement results: Vtune measured after the D/A
converter in the prototype system with a LAN between RBSs (Fig. 5).

B. Measurement Results
In this section, we present an example of preliminary meas-

urement results obtained in our laboratory on the prototype
boards described before.

The graph in Fig. 10 plots Vtune(t) measured in the client
RBS of a system configured as in Fig. 5, with a LAN between
the two RBSs. In this graph, the level 0 V is the bias voltage
between the D/A converter and the OCXO. The OCXO nomi-
nal frequency is 26 MHz. Vtune, after a transient of about 40
minutes, attains a mean value of about +0.32 V, equivalent to
+56 Hz above the OCXO nominal frequency.

We note the excellent agreement with the simulation results
shown in Fig. 4, where however higher noise was introduced
to stress the system model. In measurement results shown in
Fig. 10, on the other hand, fluctuations of Vtune(t) around the
mean value after the transient are very small, due to the con-
trolled environment of the test bed (e.g., little packet jitter). In
conclusion, the OCXO in the prototype client board converges
to the reference frequency of the server board, as expected.

C. Implementation Pitfalls
A closer analysis and detailed measurements revealed an

unexpected behaviour of the prototype system. Although the
measured trend of Vtune(t) in the client system (Fig. 10)
shows that the slave OXCO converges to a stable frequency
and that null time offset between RTOS clocks is achieved, as
desired, the frequencies of the two OCXOs, when measured
directly with a frequency meter, sometimes resulted actually
slightly different.

The reason of this apparently contradicting behaviour was
found by more in-depth measurements, by testing the system
under different loads of the microprocessor, obtained by run-
ning different test programs besides NTP routines. As a matter
of fact, the µCLinux and microprocessor resulted not fast
enough to handle all interrupts timely. In particular, the tick in-
terrupt may be not always able to increment the RTOS clock at
the time due, depending on simultaneous interrupts or different
instructions run on the microprocessor.

As a result, the unwanted spurious delay between time off-
set calculation and OCXO frequency regulation may make the
OCXO converge to a slightly different frequency, whilst time
offset is kept null in phase-lock regime.

The obvious solution is to program Vtune computation rou-
tines on a faster DSP, rather than on the µCLinux/microproc-
essor system. This is a mere implementation change, to solve a
pitfall of the practical realization, which does not affect the va-
lidity of the overall system designed. This improvement work
is currently in progress and will be featured in the next version
of the system.

V. CONCLUSIONS
In this work, we studied a method to synchronize radio base

stations in a simulcast network using NTP. In a simulcast net-
work, both time and frequency synchronization is needed. In
our system, the master RBS runs a SNTP server. All other
RBSs run a SNTP client. According to the PLL scheme, we
designed a system that synchronizes in frequency the OCXO

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

and in time the software clock of the client RBS, based on the
time stamps read in SNTP packets received from the master
RBS.

The system designed was modelled and simulated in Matlab

Simulink®, for feasibility and performance evaluation before
designing a hardware prototype. All simulation results exhib-
ited correct operation of the system designed and compliance
to project requirements.

 An experimental prototype was designed and realized in
our laboratories. Measurement results on the prototype boards
exhibited excellent agreement with simulation results and con-
firmed the practical feasibility of this method for application
in commercial systems.

Nevertheless, a closer analysis and detailed measurements
revealed some implementation pitfalls. As a matter of fact, the
µCLinux and microprocessor resulted not fast enough to han-
dle all interrupts timely. In particular, the RTOS clock may be
not always incremented at the time due, for example due to
simultaneous interrupts. As a result, this unwanted delay may
make the OCXO converge to a slightly different frequency.

Another potential pitfall of a practical realization of this
synchronization scheme lies in the software clock resolution,
which affects the time offset accuracy and hence the algorithm
precision and convergence speed. This parameter depends on
the RTOS implementation. The Unix OS have a microsecond
clock resolution, which is acceptable given the synchroniza-
tion requirements outlined in this paper. However, a faster
convergence may be achieved with a nanosecond resolution.

The next version of the system described in this paper is
currently under study. The main improvement will consist in
programming PLL routines (time offset and Vtune computa-
tion) on a faster DSP, rather than on a microprocessor, to en-
sure that the RTOS clock is always adjusted at the time due,
independently on the microprocessor load.

REFERENCES
[1] S.Y. Mui, “A Simulcast UHF Terrestrial Radio Network”, IEEE Trans.

Commun., vol. 42, no. 234, Feb./March/Apr. 1994, pp. 1460-1464.
[2] S. Ariyavisitakul, T.E. Darcie, L.J. Greenstein, M.R. Phillips, N.K.

Shankaranarayanan, “Performance of Simulcast Wireless Techniques for
Personal Communication Systems”, IEEE J. Select. Areas Commun., vol.
14, no. 4, May 1996, pp. 632-642.

[3] K. Dukhyun, G.L. Stuber, N. Hightower, “Performance of Simulcast Sys-
tems in Mobile Radio Environments”, Proc. IEEE 47th Veh. Technol.
Conf., Phoenix, AZ, USA, May 1997.

[4] J.M. Shea, K. Jung, “Simulcast Packet Transmission in Ad-Hoc Net-
works”, IEEE J. Select. Areas Commun., vol. 23, no. 3, March 2003, pp.
486-495.

[5] R.J. Abelleyro, “Simulcast Voice and Data Communications system - Los
Angeles County Sheriff California”, Proc. IEEE Conf. on Select. Topics
in Wireless Commun., Vancouver, BC, Canada, June 1992.

[6] ETSI, Trans-European Trunk Radio, Documents 05.01, 05.02, 05.03,
05.04, 05.05, 05.08, Nov. 1993.

[7] ETSI TS 102 361-1/2/3 V1.2.1, Digital Mobile Radio (DMR), Jan. 2006.
[8] Bosch, BS 770 MPT 1327 VHF-UHF Repeater-Base Station, 1996.
[9] S. Souissi, S. Sek, Hai Xie, “The Effect of Frequency Offsets on the Per-

formance of FLEX(R) Simulcast Systems”, Proc. IEEE 49th Veh. Tech-
nol. Conf., Vancouver, BC, Canada, May 1999.

[10] R. Petrovic, S. R. Filipovic, “Error Floors of Digital FM in Simulcast
and Rayleigh Fading”, IEEE Trans. Veh. Technol., vol. 47, no. 3, Aug.
1998, pp. 954-960.

[11] A. Morán, F. Pérez Fontán, J. M. H. Rábanos, M. Montero del Pino,
“Quasi-Synchronous Digital Trunked TETRA Performance”, IEEE
Trans. Veh. Technol., vol. 48, no. 2, May 1999, pp. 708-723.

[12] ITU-R Rec. M.1077, Multi-Transmitter Radio Systems Using Quasi-
Synchronous (Simulcast) Transmission for Analogue Speech, 1994.

[13] S. Bregni, Synchronization of Digital Telecommunications Networks.
Chichester, UK: John Wiley & Sons, 2002, 440 pp.

[14] D.L. Mills, "Internet Time Synchronization: the Network Time Proto-
col", IEEE Trans. Commun., vol. 39, no. 10, Oct. 1991, pp. 1482- 1493.

[15] D. Mills, RFC-1305 “Network Time Protocol (version 3). Specification,
Implementation and Analysis”, Network Working Group Report, Univer-
sity of Delaware, March 1992.

[16] D. Mills, A. Thyagarajan, “Network Time Protocol Version 4 Proposed
Changes”, Electrical Engineering Department Report 94-10.2, University
of Delaware, 1994.

[17] D. Mills, A. Thyagarajan, B.C. Huffman, “Internet Time Keeping Around
the Globe”, Proc. Precision Time and Time Interval (PTTI) Applications
and Time Meetings, Long Beach, CA, USA, Dec. 1997.

[18] D. Mills, “Clock Discipline Algorithms for the Network Time Protocol v.
4”, Electrical Engineering Report 97-3-3, University of Delaware, 1997.

[19] D. Mills, “Time and Time Interval Measurement with Application to
Computer and Network Performance Evaluation”, Electrical Engineering
Technical Memorandum, University of Delaware, Jan. 1996.

[20] D. Mills, RFC-2030 “Simple Network Time Protocol (SNTP) Version 4
for IPv4, IPv6 and OSI”. Network Working Group Report, University of
Delaware, 1996.

[21] Motorola, “Mcf5282 Coldfire Microcontroller User’s Manual - rev. 2”.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

	Select a link below
	Return to Main Menu

