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Abstract  Long-range dependence (LRD) is a largely verified 
property of Internet traffic, which severely affects queuing per-
formance in network buffers. A common approach for guarantee-
ing performance requirements is to control the statistical profile 
of the input traffic by regulators based on the leaky bucket 
scheme. In this paper, we investigate by simulation how the 1/fα 
power-law spectrum of LRD traffic is altered when traffic is 
regulated by a leaky bucket policer. Analysis of the traffic spec-
tral characteristics is carried out mainly by means of the Modi-
fied Allan Variance, a time-domain quantity with demonstrated 
superior accuracy in fractional-noise parameter estimation, re-
cently introduced also for traffic analysis. This approach allows 
to get a finer insight into power-law spectral characteristics of po-
liced traffic. We also investigate some other properties of the 
leaky bucket fed with LRD traffic, such as its dropping probabil-
ity and its effect on queuing delay in a following FIFO scheduler. 

Index Terms  Communication system traffic, fractional noise, 
Internet, long-range dependence, queuing analysis, traffic control 
(communication). 

I. INTRODUCTION 
nternet traffic exhibits temporal correlation properties, such 
as self-similarity and long memory (long-range depend-

ence, LRD) on various time scales [1][3]. These properties 
emphasize long-range time-correlation between packet arri-
vals. Fractional noise and fractional Brownian motion models 
are often used to describe such behaviour of Internet traffic se-
ries, which include, but are not limited to, cumulative or in-
cremental data count transmitted over time, inter-arrival time 
series of successive TCP connections or IP packets, etc. 

In a self-similar random process, a dilated portion of a reali-
zation (sample path) has the same statistical characterization 
than the whole. “Dilating” is applied on both amplitude and 
time axes of the sample path, according to a scaling parameter 
H (Hurst parameter). On the other hand, LRD is a long-
memory property, usually equated to an asymptotic power-law 
decrease of the power spectral density (PSD) ~f -γ (for f→0) or, 
equivalently, of the autocovariance function. Under some hy-
potheses [2], the integral of a LRD process is self-similar with 
H related to γ (e.g., fractional Brownian motion, integral of 
fractional Gaussian noise). 

It has been well recognized [4]—[7] that LRD in input traf-
fic contributes to build up long queues in network buffers. In 
the case of fractional Gaussian traffic, for example, it has been 

found [4][5] that the queue tail has Weibull distribution, i.e. 
the buffer occupancy X exceeds a given threshold x with as-
ymptotic probability P{X > x} ~ exp( -β x1-γ ), where β is a 
positive function of γ and of other network parameters.  

The Weibull queue length distribution departs significantly 
from the plain exponential distribution associated to Poisson 
or short-range dependent input traffic. In particular, the closer 
γ is to 1, the slower the queue tail decreases. Consequently, the 
probability of suffering high waiting delay in network buffers 
increases dramatically. In conclusion, the network delay per-
formance depends considerably on the actual value of the H 
and γ parameters, among others. Hence, a notable interest, dat-
ing back to 1990's, for appropriate analysis tools to character-
ize self-similar or LRD traffic and to estimate its parameters. 

Guaranteeing performance requirements, e.g. delay limits, 
calls for a strict control of the statistical profile of the traffic 
offered to the network. A common approach is to control input 
traffic by regulators based on the leaky bucket scheme.  

The leaky bucket regulator was proposed by J. Turner in [8]. 
This scheme is based on a non-negative counter, which is in-
cremented whenever the controlled traffic flow offers a packet 
(or bit/byte) to the network and, if greater than zero, is decre-
mented periodically with rate r. If the counter exceeds a given 
threshold b upon being incremented, the regulator drops the 
packet. Thus, the leaky bucket controls the average rate (en-
forced to r) and the burstiness (depending on b) of the through 
traffic. In other words, this scheme actually behaves as a traf-
fic policer, because traffic is forwarded immediately, with no 
buffering, or simply dropped if parameters are exceeded. 

Enforcing average rate and burstiness on input flows may 
allow to attain given performance targets in the network. The 
possibility of controlling input traffic by leaky bucket regula-
tors has been widely treated in literature, since early works 
considering only Markovian or short-range dependent traffic 
[9]—[11]. Later on, several authors extended research to 
leaky-bucket regulation of LRD traffic [12]—[18]. Most stud-
ies have proven that it is difficult to reduce long-range de-
pendence by use of leaky bucket regulators. Notwithstanding 
this general statement, precise conclusions drawn by some 
works are partially contradicting.  

In paper [12], a study on measured and synthetic traffic 
traces concludes that it seems possible to reduce LRD of the 
regulated traffic, but only if the regulator drops traffic drasti-
cally. In paper [13], an analytical study is carried out on a type 
of LRD traffic consisting of connections with long-tailed dura-
tion, offered to the system as a Poisson arrival process. This 
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paper concludes that LRD cannot be removed from the regu-
lated traffic. However, a different result is presented in paper 
[14], which claims that it is possible to reduce traffic correla-
tion (i.e., the Hurst parameter) by a shaping regulator. Finally, 
in papers [15][16], the output traffic of a single buffered server 
(rather than a regulator) is studied analytically with LRD input 
traffic. Both these studies conclude that the Hurst parameter of 
the output traffic is identical to that of the input traffic. 

Such apparent contradictions mainly stem from the diffi-
culty of studying analytically the traffic output by a traffic 
regulator, which is both non linear and provided with memory, 
fed with LRD input traffic. Simulation as well is made cum-
bersome by the asymptotical definition of LRD for f→0. 

In this work, we investigated how LRD traffic is affected by 
a leaky bucket policer, as defined by scheme [8] recalled 
above. In particular, we simulated the behaviour of a leaky 
bucket fed with input traffic x(t) [bit/s] having power-law one-
sided PSD Sx(f) = C/f γ (for 0 < γ < 1). Then, we studied the 
output traffic spectrum, observing how this is affected for 
various values of r and b. Analysis of the traffic spectral char-
acteristics was carried out mainly by means of the Modified 
Allan Variance (MAVAR), a time-domain quantity originally 
conceived for frequency stability characterization, because of 
its demonstrated superior spectral sensitivity and accuracy in 
fractional-noise parameter estimation. We also investigated 
some other properties of the leaky bucket fed with LRD traf-
fic, such as its dropping probability and its effect on queuing 
in a downstream First-In First-Out (FIFO) buffer. 

The rest of the paper is organized as follows. In Sec. II, ba-
sic notions of self-similarity and long-range dependence are 
briefly summarized. In Sec. III, main properties of MAVAR 
for estimating LRD parameters are recalled, referring to a gen-
eral power-law model of processed data. In Sec. IV, the input 
traffic model and the procedure for pseudo-random traffic 
generation are detailed. In Sec. V, simulations results are pre-
sented and commented. 

II. SELF-SIMILARITY AND LONG-RANGE DEPENDENCE 
A random process X(t) (e.g., cumulative packet arrivals in 

time interval [0, t]), is said to be self-similar, with scaling pa-
rameter of self-similarity or Hurst parameter H>0, H∈ℜ, if 

 )()( atXatX H
d

−=  (1) 
for any a>0, where =d denotes equality for all finite-
dimensional distributions [1][2]. In other terms, the statistical 
description of X(t) does not change by scaling simultaneously 
its amplitude by a-H and the time axis by a. Most self-similar 
processes are not stationary, since the moments of X(t), pro-
vided they exist, behave as power laws of time [1]. 

In practice, the class of self-similar (H-SS) processes is usu-
ally restricted to that of self-similar processes with stationary 
increments (or H-SSSI processes), which are “integral” of 
some stationary process. For example, consider the δ-
increment process of X(t), defined as Yδ(t) = X(t)-X(t-δ) (e.g., 
packet arrivals in the last δ time units). For a H-SSSI process 
X(t), Yδ(t) is stationary and 0 < H < 1 [2]. 

Long-range dependence (LRD) of a process is defined by 
an asymptotic power-law decrease of its autocovariance or 

equivalently PSD functions [1][2]. Let Y(t) be a second-order 
stationary stochastic process. The process Y(t) exhibits LRD if 
its autocovariance function follows asymptotically  

 10,for~)( 1
1 <<+∞→− γττδ γcRY  (2) 

or, equivalently, its two-sided power spectral density (PSD) 
follows asymptotically 

 10,0for~)( 2 <<→− γγ ffcfSY  (3). 

In general, a random process with non-integer power-law 
PSD is also known as fractional (not necessarily Gaussian) 
noise. It can be proven [2] that H-SSSI processes X(t) with 
1/2 < H < 1 have long-range dependent increments Y(t), with 
 12 −= Hγ  (4). 

Strictly speaking, the Hurst parameter characterizes self-
similar processes, but it is frequently used to label also the 
LRD increments of H-SSSI processes. In this paper, we follow 
this common custom with no ambiguity. Hence, the expression 
“Hurst parameter of a LRD process” (characterized by pa-
rameter γ) denotes actually, by extension, the Hurst parameter 
H = (γ+1)/2 of its integral H-SSSI parent process. 

III. ESTIMATING PARAMETERS H AND γ  OF LRD DATA USING 
THE MODIFIED ALLAN VARIANCE 

Estimating statistical parameters that characterize self-
similar and LRD random processes is an issue well studied in 
literature [1][2][19][20]. In this work, we used the Modified 
Allan Variance (MAVAR), recently introduced as traffic analy-
sis tool for very accurate estimation of parameters H and γ of 
given self-similar and LRD traffic series [21][22]. 

A. The Modified Allan Variance 
MAVAR is a well-known time-domain quantity, originally 

conceived in 1981 for frequency stability characterization of 
precision oscillators [23][27] by modifying the definition of 
the Allan Variance (AVAR) recommended by IEEE in 1971 
[28]. MAVAR was designed with the goal of discriminating 
noise types with power-law spectrum (i.e., in broad terms, 
fractional noise) recognized very commonly in frequency 
sources. MAVAR has been demonstrated to feature superior 
spectral sensitivity and accuracy in fractional-noise parameter 
estimation, coupled with excellent robustness against nonsta-
tionarities in data analyzed [22] (e.g., drift and steps). MAVAR 
was also successfully applied to real network traffic analysis, 
allowing to identify fractional noise in experimental results 
[22][29]. This section briefly recalls MAVAR properties most 
relevant to our aim. For all details, the interested reader is re-
ferred to the bibliography. 

Given a finite set of N samples {xk} of a signal x(t), evenly 
spaced by sampling period τ0, MAVAR can be estimated using 
the ITU-T standard estimator [23] 
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where the observation interval is τ = nτ0 and n = 1, 2,..., N/3.  
The MAVAR is a kind of variance of the second difference 

of input data. In very brief, it differs from the unmodified 
Allan variance in the additional internal average over n adja-
cent samples: for n=1 (τ=τ0), the two variances coincide. A re-
cursive algorithm for fast computation of this estimator exists 
[23], which cuts down the number of operations needed for all 
values of n to ~N2 instead of ~N3. 

It should be noted that the point estimate (5), computed by 
averaging N-3n+1 terms, is a random variable itself. Exact 
computation of confidence intervals is not immediate and, an-
noyingly enough, depends on the spectrum of the underlying 
noise [30][34]. However, in general, along a plot of 
MAVAR(τ), confidence intervals are negligible for short τ and 
widen moving to longer τ, where fewer terms are averaged. In 
our results, therefore, we excluded MAVAR values computed 
for largest n, where uncertainty is not negligible. 

B. Power-Law Random Processes 
It is convenient to extend the LRD power-law model of 

PSD (3). As customary in characterization of phase and fre-
quency noise of precision oscillators [35], we deal with ran-
dom processes x(t) whose one-sided PSD is modelled as 
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where P is the number of noise types considered, αi and hαi
 

are model parameters (αi, hαi
 ∈ ℜ) and fh is the upper cut-off 

frequency. Such random processes are commonly referred to 
as power-law or fractional noise (not necessarily Gaussian). 

Power-law noise with 0 ≤ αi ≤ 4 was revealed in practical 
measurements of various physical phenomena, such as phase 
noise of precision oscillators [23][28][35] and Internet traffic 
[1][2][29], whereas P should be not greater than few units for 
the model being useful. If the process x(t) is LRD with PSD 
(3), then this model still applies, for P=1 and 0 < αi < 1 (at 
least asymptotically). Although values αi ≥ 1 yield model pa-
thologies, such as infinite variance and even nonstationarity 
[36], this model is common, considering also that real-world 
measurements have finite duration and bandwidth. 

Under this general hypothesis of power-law PSD, by letting 
P=1, α=αi and in the whole range of MAVAR convergence 
0 ≤ α < 5, MAVAR is found to follow a simple power law 
(ideally asymptotically for n→∞, nτ0=τ, but in practice for 
n>4), i.e. 

 αµττσ µ
µ +−= 3,~)(Mod 2 Ay  (7). 

If P>1, it is immediate to generalize (7) to summation of 
powers ∑i

i
i

A µ
µ τ . This is a fundamental result. If x(t) obeys 

(6), a log-log plot of Mod σy
2(τ) looks ideally as a piecewise 

function made of P straight segments, assuming sufficient 
separation between components, whose slopes µi can be esti-
mated to yield exponents αi = 3+µi of the fractional noise 
terms that are dominant in different ranges of τ. 

If we consider a LRD process with PSD (3), characterized 

fGt(α, 0, 1) fGt(α, mx, σx
2) fGtR(α, mx, σx

2)
X

σx

+

mx

half-wave rectifier

{xk}

Pseudo-random normalized fractional Gaussian traffic [bit/s] with:
•PSD Sz(f) ∝ 1/fα, for 0 < α < 1 
•average rate mz = 0 , variance σz

2 = 1
•Gaussian distribution of samples zk

{zk}

 
Fig. 1: Generation of rectified fractional Gaussian traffic. 

by Hurst parameter 1/2 < H < 1, from (4) and (7) we obtain 
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In paper [22], these estimates of H and α were demonstrated 
to be very accurate and robust against nonstationarities in the 
processed data (drifts, periodic trends and steps).  

Finally, let us notice that this procedure is analogous to that 
of the wavelet second-order log-scale diagram technique 
[1][2][20], which analyzes data over a range of scales, by ob-
serving the power-law behaviour (i.e., estimating the slopes) 
of the wavelet detail variances across octaves. 

IV. MODEL AND SYNTHESIS OF INPUT TRAFFIC 
Several methods to generate pseudo-random self-similar 

and LRD data sequences are available in literature. In this 
work, we followed the method proposed by Paxson [37] for 
fast generation of fractional Gaussian traffic (fGt). This type 
of traffic is remarkable, since when it is fed into a FIFO buffer 
the queue tail distribution can be derived analytically [4][5]. 

The Paxson's procedure generates LRD pseudo-random data 
series {xk} of length N, with power-law one-sided PSD Sx(f) = 
h/f α, for assigned values of α (0 < α < 1) or H = (1+α)/2, 
mean mx and variance σx

2. The sequence {xk} represents the 
incremental data count [bit/s] input at each time unit into the 
leaky bucket under study. The procedure is outlined in Fig. 1.  

First, a pseudo-random sequence {zk} denoted fGt(α, 0, 1) 
is generated, with PSD Sz(f)∝1/f α, normally-distributed sam-
ples, null mean mz=0 and variance σz

2=1. Then, in order to ad-
just its mean and variance, fGt(α, 0, 1) is multiplied by σx and 
added to mx, obtaining the sequence fGt(α, mx, σx

2). In order to 
avoid negative samples (data rate cannot be negative), fGt(α, 
mx, σx

2) is then filtered by a half-wave rectifier, which leaves 
untouched the positive samples, but outputs a null sample 
when the input is negative. Finally, we obtain the “rectified” 
fractional Gaussian traffic sequence fGtR(α, mx, σx

2), i.e. {xk}.  
Obviously, both mean and variance of fGtR are slightly 

smaller than the target values mx and σx
2 of fGt(α, mx, σx

2). 
Moreover, the half-wave rectifier is a non linear device, which 
unfortunately distorts the power spectrum of the fGt sequence. 
The analysis of the rectified process spectrum is difficult [38], 
but it can be proven that α is somehow altered.  

Anyway, the distortion of α, mx and σx
2 is negligible, if the 

half-wave rectifier clips negative samples only rarely. Since 
the probability of having a negative sample in the fGt se-
quence is equal to 
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parameters mx and σx
2 can be set to make negative samples to 

occur very seldom in fGt(α, mx, σx
2). Therefore, it is not actu-

ally possible to set the mx and σx
2 parameters completely at 

will: the standard deviation σx must be small enough, with re-
spect to mx, to limit spectral distortion by the rectifier.  

In simulations presented in this paper, however, we set care-
fully the mean and variance of the fGt series, to ensure that the 
occurrence of negative samples is very rare. Moreover, the mx, 
σx

2 and α parameters of the rectified series fGtR were also 
measured a posteriori: in all cases, they resulted practically 
equal to the corresponding values of the original fGt series. 

It is worth noting that also other methods are available in 
literature to generate pseudo-random fractional traffic. For ex-
ample, paper [39] presents a method for synthesizing log-
normal multi-fractal traffic sequences. Log-normal processes 
have the desirable property of being non-negative by construc-
tion, which relieves the need of rectifying the sequence as 
needed for Gaussian series. Moreover, the multi-fractal model 
allows also to consider traffic with more complex behaviour 
than a simple power law. In this work, nevertheless, we de-
cided to adopt the fractional Gaussian traffic model for the 
sake of simplicity and because, as pointed out before, for this 
type of traffic the tail distribution of a FIFO queue was derived 
analytically [4][5]. Further simulations, with multi-fractal log-
normal traffic, are left for future work. 

V. SIMULATION RESULTS 
According to the Paxson's procedure outlined in the previ-

ous section, we generated sequences of fractional Gaussian 
traffic {xk} made of N = 223 = 8 388 608 samples, representing 
the incremental data count [bit/s] input at each time unit into 
the leaky bucket under study. We set the time unit τ0 = 1 ms, 
the mean mx = 2279 bit per time unit (i.e., 2.279 Mbit/s) and 
the deviation σx = 773.9 bit per time unit (i.e., 773.9 kbit/s), as 
in [5]. We varied α in range 0 < α < 1. For example, Fig. 2 
plots a segment of fGtR series {xk} generated with α = 0.50. 

The input traffic x(t) was fed into a leaky bucket policer, as 
defined by scheme [8] recalled in Sec. I. Then, we character-
ized the output traffic, observing how it is affected for various 
values of the policer rate r [bit/s] and threshold b [bit], both in 
the time domain, by means of MAVAR, and in the frequency 
domain, by classic FFT-based power spectrum estimation (pe-
riodogram over 1024 points, having divided the sequence in 
8192 segments with Welch data windowing [40]). 

Figs. 3 and 4 show the PSD and MAVAR, respectively, 
computed on the traffic sequence at the output of the policer, 
with threshold b = 14202 bit and for various values of the ratio 
r/mx of the policer rate to the input traffic mean rate, fed with 
fGtR input traffic with α = αIN= 0.50.  

Curves for r/mx = ∞ were computed directly on the input 
sequence x(t), which in this case transits through the policer 
unaffected, as obvious. The value r/mx = 1.2 may represent a 
normal operation condition of the leaky bucket, when the poli-

cer rate is greater than the source mean rate and the policer 
drops traffic only rarely. In this case, the customer is comply-
ing with the traffic conditioning agreement and the policer 
does not clip traffic significantly: both PSD and MAVAR of 
the output traffic nearly coincide with those of input traffic. 
Decreasing the ratio r/mx, we notice that the spectral character-
istics of the through traffic begin to be affected significantly.  

When r/mx ≥ 1 or so, the policer still works in a quasi-linear 
way: the output PSD and MAVAR still follow approximately a 
simple power law (linear trend in the log-log plot), i.e. the 
output traffic still obeys the model (6) with P = 1, Sx(f) ≅ h/f α, 
although with different α. In other words, the policer is alter-
ing LRD parameters α and H of the through traffic, but it is 
not distorting significantly the spectral power-law nature of 
the fractional traffic. 

 When r/mx << 1, the policer drops a significant part of traf-
fic and the effect of its nonlinear behaviour becomes apparent:  
the output PSD and MAVAR depart from a simple power law. 
The minimum value of the ratio we considered is r/mx = 0.02: 
in this extreme case, the policer drops ~97% of the traffic. In 
practice, such a situation may occur when the customer ex-
ceeds dramatically the limits of the traffic contract and the po-
licer drops almost the entire traffic offered. In this case, the 
output traffic spectrum does not obey anymore the simple 
power law (6) with P = 1: the traffic spectrum now appears 
approximable by a two-terms power-law model (P = 2), i.e. 
Sx(f) ≅ h/f α1 + h/f α2. It is worth noticing that this is better evi-
dent in the MAVAR curve, rather than in the PSD, since low-
frequency terms are “expanded” (this is the reason why time-
domain quantities are better suited than frequency-domain 
measures to analyze fractional noise with α > 0). 

A closer look on Fig. 4 calls for a more thorough investiga-
tion on how the α parameter of LRD traffic is altered through 
the leaky bucket. MAVAR is particularly suitable for such a 
study, because of its superior accuracy in fractional-noise pa-
rameter estimation, as widely demonstrated in cited literature. 

By inspection of Fig. 4, first we notice that for r/mx ≥ 0.4 
the MAVAR trend is nearly linear and thus the output traffic 
spectrum can be somehow approximated by a simple power 
law Sx(f) ≅ h/f α (P = 1). For r/mx < 0.4, the traffic spectrum is 
heavily distorted by the policer and now includes two clear 
power-law terms, i.e. Sx(f) ≅ h/f α1 + h/f α2 (P = 2). Actual val-
ues of α1 and α2, estimated by linear regression separately in 
intervals 10-3 s < τ < 3·10-1 s and 100 s < τ < 3·102 s, respec-
tively, are reported in Table 1.  

To summarize, the lower is the ratio r/mx (i.e., the more traf-
fic is clipped), the more the α parameter is diminished by the 
leaky bucket action. However, when the ratio r/mx is very low, 
the strong clipping action of the policer distorts the spectrum 
so much, to produce a new, slower power-law term, with α>1. 
For r/mx ≥ 0.4, the estimated values of α1 and α2 are very 
close, being MAVAR(τ) almost linear.  

As a final, perhaps unnecessary remark, we mention that al-
tering the parameter α of a fractional random process with 
PSD Sx(f) = h/f α can be seen as filtering the signal through an 
integrator or differentiator of fractional order [41]. 
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Fig. 2: Segment of fGtR sequence {xk} generated by the method in Fig. 1 
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Fig. 4: MAVAR of the traffic output by a leaky bucket policer (b=14202 bit, r) 
with fGtR input traffic (αIN=0.50, mx=2.279 kbit/ms, σx=773.9 bit/ms,τ0=1 ms). 

Table 1:  
Values of α1 and α2 estimated from MAVAR results in Fig. 4 (αIN=0.50). 

r/mx 
α1 

10-3 s < τ < 3·10-1 s 
α2 

100 s < τ < 3·102 s 
∞ 0.50 0.489 

1.2 0.486 0.488 
1.1 0.438 0.482 
1.0 0.325 0.449 
0.8 -0.116 0.201 
0.6 -0.612 -0.345 
0.4 -0.868 -0.998 
0.2 -0.957 1.255 
0.02 -0.921 1.655 

The case r/mx << 1, with high clipping rate in the policer 
and heavy traffic spectrum distortion, corresponds to a sce-
nario that, in practice, should occur only exceptionally. There-
fore, we investigated more thoroughly the behaviour of the 
leaky bucket in case r/mx > 1, in which the output traffic spec-
trum can be still well approximated by a simple power law, at-
tempting to study how the α parameter of LRD traffic is al-
tered by the policer.  

Simulation results shown in Figs. 5 and 6 were obtained by 
feeding the leaky bucket with fGtR traffic with α = αIN = 0.90. 
Then, we varied both parameters r and b of the policer in a 
wide interval. The α parameter of the output traffic was esti-
mated by linear regression on MAVAR curves (we excluded 
safely the last 2 decades because of lower confidence). 

Fig. 5 plots the loci of the (r, b) pairs, for which the same 
value αOUT of the α parameter was estimated on the output 
traffic, having normalized r to the input traffic average mx and 
b to the input traffic deviation σx. From this graph, we can ob-
serve that the dependence of αOUT on the leaky bucket parame-
ters is not trivial. Apparently, for relatively large values of r/mx 
and b/σx, we have αOUT ≅ αIN and in general αOUT decreases as 
r/mx and b/σx get smaller. However, it is also possible to ob-
serve the non-monotonic behaviour of α. For example, we 
measured αOUT = 0.86 with r/mx = 1.23 for three different val-
ues of b/σx (points A1, A2 and A3).  

Fig. 6 plots, for the same model settings as in Fig. 5, the 
fraction of traffic dropped by the regulator. The dropping 
probability follows a much more intuitive trend, that is, it al-
ways diminishes when either r/mx or b/σx grows and vice-
versa. These results confirm that the dependence of α of the 
output traffic on leaky bucket settings has significantly higher 
complexity than more traditional performance measures, such 
as the dropping probability.  

As recalled in Sec. I, the α parameter of input traffic has 
great importance for the provisioning of network resources. 
Therefore, we simulated a scenario where the policer output 
traffic is fed into a FIFO scheduler. The x(t) traffic at the input 
of the leaky bucket has the same average rate mx and deviation 
σx set in previous experiments. The policer rate and threshold 
are set r = 3 Mbit/s (i.e., r/mx = 1.31) and b = 14202 bit (i.e., 
b/σx = 18.3 ms), respectively. With these settings, the policer 
affects a negligibly (cf. Fig. 4 and Table 1). The FIFO sched-
uler has an output line with capacity C = 2.532 Mbit/s. 
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Fig. 5: Loci of the (r/mx, b/σx) pairs for which the same αOUT was estimated on 

the traffic output by a leaky bucket policer fed with fGtR (αIN=0.90). 
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Fig. 6: Loci of the (r/mx, b/σx) pairs for which the same dropping probability 

was measured in a leaky bucket policer fed with fGtR (αIN=0.90). 

Then, Fig. 7 plots the probability P(d>D), estimated by 
simulation, that the traffic experiences a delay d greater than D 
in the FIFO queue, for four different values of the α parameter 
of the policer input traffic, viz. α = 0.0, 0.5 and 0.8. 

Let us assume that the network operator and the customer 
stipulated a traffic conditioning agreement with r = 3 Mbit/s 
and b = 14202 bit. Moreover, the service level agreement 
specifies that the probability that the delay d in the scheduler 
exceeds D = 20 ms is P(d>20 ms) ≤ 0.05. Finally, let us as-
sume that the customer supplies fGtR traffic x(t) with mx and σx 
as in previous simulations, with α = 0.5.  By inspection of Fig. 
7, we conclude that the service level agreement is fulfilled, be-
cause P(d>20 ms) < 0.05. However, if the customer supplies 
x(t) with same mx and σx, but with α = 0.8, we observe again 
from Fig. 7 that the service level agreement is now violated, as 
the probability of exceeding delay D = 20 ms results 
P(d>20 ms) ≅ 0.45. In this case, the policer is unable to alter 
the α parameter of traffic and the result is a disruption of the 
required quality of service.  
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Fig. 7: Probability of exceeding delay D in a FIFO queue at the output of the 

policer (mx=2.279 kbit/ms, σx=773.9 bit/ms,τ0=1 ms). 

VI. CONCLUSIONS 
In this paper, we investigated by simulation how the 1/fα 

power-law spectrum of LRD traffic is altered when traffic is 
regulated by a leaky bucket policer. Analysis of the traffic 
spectral characteristics was carried out mainly in the time do-
main by means of the Modified Allan Variance, because of its 
demonstrated superior accuracy in fractional-noise parameter 
estimation. This approach allowed to get a finer insight into 
power-law spectral characteristics of regulated traffic. 

In our simulations, we found that the policer may alter sig-
nificantly the spectral characteristics of through traffic, de-
pending in particular on ratio r/mx (policer rate to input traffic 
mean rate). Our findings, at least to the limited extent of the 
hypotheses made, may be summarized as follows: 
• when r/mx ≥ 1.2, traffic transits practically unchanged; 
• when 1 ≤ r/mx < 1.2 or so, the output traffic spectrum is still 

well approximated by a simple power law h/f α, i.e. the 
leaky bucket does not distort significantly the spectral 1/f α 
nature of the fractional traffic; nevertheless, not to mention 
the impact on mx and σx

2, traffic LRD is reduced, as the α 
parameter appears diminished by policer clipping; 

• when r/mx < 0.4, the policer drops a significant part of traf-
fic and the effect of its nonlinear behaviour becomes appar-
ent:  the output spectrum, heavily distorted by the policer, 
departs from a simple power law and includes two terms, 
i.e. Sx(f) ≅ h/f α1 + h/f α2, dominant in different intervals of 
frequency f or observation interval τ ; while α1 is smaller 
than the input α, α2 is considerably higher (even >1); 

• to summarize, the lower is r/mx , the more the α parameter 
is diminished by the policer; however, when r/mx is very 
low, policer clipping heavily distorts the traffic spectrum, 
which departs from the simple LRD model, and the effect 
on α may be hard to predict. 
To conclude, this study confirms that controlling the α pa-

rameter of source traffic by use of a leaky bucket policer is 
difficult, if not impossible, aiming at guaranteeing the delay 
performance specified in service level agreements. In fact, if 
the customer increases the mean rate of its offered traffic, the 
leaky bucket is able to clip it effectively, thus avoiding net-
work congestion. On the other hand, if the customer increases 
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the α parameter of its offered traffic, the policer may very well 
let it pass unaltered and, in turn, large queues and delay may 
build up in downstream queues.  

Our research activity is now focused on a more complete 
characterization of the output of this and other types of traffic 
regulators, aiming at identifying schemes capable of acting 
more effectively on the α parameter of regulated traffic. 
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