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Abstract  Internet traffic exhibits self-similarity and long-
range dependence (LRD) on various time scales. In this paper, we 
propose to use the Modified Hadamard Variance (MHVAR), a 
time-domain measure for high-resolution spectral analysis, to es-
timate the Hurst parameter H of LRD traffic data series or, more 
generally, the exponent α of traffic series with 1/fα power-law 
spectrum. MHVAR generalizes the principle of the Modified 
Allan Variance (MAVAR), a well-known tool widely used since 
1981 for frequency stability characterization, to higher-order dif-
ferences of input data; in our knowledge, it has been mentioned 
in literature only few times and with little detail so far. 

The behaviour of MHVAR with power-law random processes 
and some common deterministic signals (viz. drifts, sine waves, 
steps) is studied. The MHVAR performance in estimating H is 
evaluated by analysis and simulation, comparing it to the wavelet 
Logscale Diagram (LD) and to MAVAR. Extensive simulations 
show that MHVAR has highest accuracy and confidence in frac-
tional-noise parameter estimation, even slightly better than 
MAVAR. Moreover, MHVAR features a number of other advan-
tages, which make it useful to complement other established 
techniques such as MAVAR and LD. Finally, MHVAR and LD 
are also applied to a real IP traffic trace. 

Index Terms  Fractional Brownian motion, fractional noise, 
Internet, long-range dependence, random walk, self-similarity, 
traffic control (communication), traffic model. 

I. INTRODUCTION 
nternet traffic exhibits intriguing temporal correlation prop-
erties, such as self-similarity and long memory (long-range 

dependence) on various time scales [1][3]. Contrary to the 
classical Poisson-model assumption, these properties empha-
size long-range time-correlation between packet arrivals. Frac-
tional noise models are used to describe the behaviour of such 
traffic series, which include, but are not limited to, cumulative 
or incremental data count transmitted over time, inter-arrival 
time series of successive TCP connections or IP packets, etc. 

In a self-similar random process, a dilated portion of a reali-
zation (sample path) has the same statistical characterization 
than the whole. “Dilating” is applied on both amplitude and 
time axes of the sample path, according to a scaling parameter 
called Hurst parameter. On the other hand, long-range depend-
ence (LRD) is a long-memory property observed on large time 
scales: LRD is usually equated with an asymptotic power-law 
decrease of the autocovariance function and of the power 

spectral density (PSD). Under some hypotheses, the integral of 
a LRD process is self-similar (e.g., fractional Brownian mo-
tion, integral of fractional Gaussian noise). 

Estimating statistical parameters that characterize self-
similar and LRD random processes is a well studied issue, 
aiming at best modelling traffic for example to the purpose of 
network simulation. Several algorithms exist, in particular, to 
estimate the Hurst parameter H and the spectrum frequency 
exponent γ of given self-similar and LRD traffic series [1]-[5]. 

In previous papers [6][7], the Modified Allan Variance 
(MAVAR) was introduced as traffic analysis tool for accurate 
estimation of H and γ. MAVAR is a well-known time-domain 
quantity, originally conceived in 1981 for frequency stability 
characterization of precision oscillators [8][11] by modify-
ing the definition of the Allan Variance (AVAR) recommended 
by IEEE in 1971 [12]. MAVAR was designed with the goal of 
discriminating noise types with power-law spectrum (i.e., in 
broad terms, fractional noise) recognized very commonly in 
frequency sources. MAVAR has been demonstrated to feature 
superior spectral sensitivity and accuracy in fractional-noise 
parameter estimation, coupled with robustness against nonsta-
tionarity in data analyzed [6][7]. MAVAR was successfully 
applied to real network traffic analysis, allowing to identify 
fractional noise in experimental results [6][7][13]. 

In this work, we extended the scope of research [6], investi-
gating the properties of other time-domain variances designed 
after AVAR, with the aim at further improving the accuracy of 
estimation of H and γ. Then, a Modified Hadamard Variance 
(MHVAR) is studied by analysis and simulation. In our knowl-
edge, this particular variance has been mentioned in literature 
only few times and with little detail so far.  

Extensive simulations show that MHVAR exhibits the high-
est accuracy and confidence in fractional-noise parameter es-
timation, even slightly better than MAVAR. The MHVAR 
method has been applied to pseudo-random LRD data series 
and evaluated by comparison to the well-established logscale 
diagram (LD) technique based on wavelet analysis [2][4] and 
to the MAVAR method previously proposed in [6][7]. More-
over, the behaviour of MHVAR with some deterministic sig-
nals that yield nonstationarity in data under analysis is ad-
dressed. Finally, MHVAR and LD are also evaluated on a real 
IP traffic trace, providing a sound example of application to 
experimental traffic characterization. 
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II. SELF-SIMILARITY AND LONG-RANGE DEPENDENCE 
A random process X(t) (say, cumulative packet arrivals in 

the time interval [0, t]) is said to be self-similar, with scaling 
parameter of self-similarity or Hurst parameter H>0, if 

 )()( atXatX Hd −=  (1) 

for all a>0, where d=  denotes equality for all finite-
dimensional distributions [1][2]. In other terms, the statistical 
description of X(t) does not change by scaling simultaneously 
its amplitude by a-H and time by a. Self-similar processes are 
not stationary by definition, since the moments of X(t), pro-
vided they exist, behave as power laws of time. 

In practical applications, the class of self-similar (H-SS) 
processes is usually restricted to that of self-similar processes 
with stationary increments (or H-SSSI processes), which are 
“integral” of some stationary process. For example, consider 
the δ-increment process of X(t), defined as Yδ(t) = X(t)-X(t-δ) 
(say, packet arrivals in the last δ time units). For a H-SSSI 
process X(t), Yδ(t) is stationary and 0 < H < 1 [2]. 

Long-range dependence (LRD) of a process is defined by 
an asymptotic power-law decrease of its autocovariance or 
equivalently PSD functions [1][2]. Let Y(t) be a second-order 
stationary stochastic process. The process Y(t) exhibits LRD if 
its autocovariance function follows asymptotically  

 10,for~)( 1
1 <<+∞→− γδδδ γcRY  (2) 

or, equivalently, its power spectral density (PSD) follows as-
ymptotically 

 10,0for~)( 2 <<→− γγ ffcfSY  (3). 

A random process with non-integer power-law PSD is also 
known as fractional noise. It can be proven [2] that H-SSSI 
processes X(t) with 1/2 < H < 1 have long-range dependent in-
crements Y(t), with 
 12 −= Hγ  (4). 

Strictly speaking, the Hurst parameter characterizes self-
similar processes, but it is frequently used to label also the 
long-range dependent increment processes of H-SSSI proc-
esses. Hence, the expression “Hurst parameter of a LRD proc-
ess” (characterized by the parameter γ) denotes actually, by ex-
tension, the Hurst parameter H = (γ+1)/2 of its integral H-SSSI 
parent process.  

III. BEYOND THE MODIFIED ALLAN VARIANCE 
Although MAVAR proved very sensitive and robust in frac-

tional-noise parameter estimation [6][7], yet requiring light-
weight computational effort, we extended our scope of re-
search studying other variances with even higher spectral reso-
lution, aiming at further improving the accuracy of estimation 
of H and γ, but still with reasonable complexity. In this sec-
tion, the most interesting variances considered in our study, by 
analysis and simulation, are overviewed. For best understand-
ing of this and next sections, we assume that the reader is fa-
miliar with fundamentals of time-domain variances for phase 
and frequency stability characterization. For a basic survey on 

this subject, see [8][14]. More in detail, an extensive list of 
references is provided by [15]. 

Total Variance (TOTVAR) and Modified Total Variance are 
improvements of conventional estimators of the Allan Vari-
ance σ2

y(τ) and Modified Allan Variance Mod σ2
y(τ) 

[16][19]. Total estimators improve the confidence of the 
variance estimate for largest observation intervals τ, where 
few samples are averaged, by periodically extending the input 
data sequence beyond its finite measurement interval. Unfor-
tunately, total estimators suffer bias, depending on τ and the 
type of underlying noise, which affects the curve slope in log-
log diagrams. In practice, taking this bias into account makes 
cumbersome to estimate H and γ from total variance slope. 
Hence, total estimators are not suitable to our aim. 

The Hadamard Variance (HVAR) was proposed by Baugh 
[20] in 1971, purposely for high-resolution spectral analysis. 
Generally based on a linear combination of M+1 consecutive 
samples, HVAR may attain highest spectral resolution, adjust-
ing appropriately the dead time between measurements and the 
weighting coefficients of the M+1 samples [14]. In particular, 
the most useful definition of HVAR is based on weighting the 
M+1 samples with binomial coefficients (BC). This way, bet-
ter spectral selectivity than AVAR is achieved [20][21]. The 
(M+1)-samples BC-weighted HVAR is a variance of the Mth 
difference of input data, whereas AVAR is a 2nd-difference 
variance (i.e., based on 3 samples). The structure function the-
ory, developed by Lindsey and Chie [22], gives a unifying 
view of such time-domain variances evaluated on the Mth dif-
ference of the data sequence analyzed.  

A Total Hadamard Variance (TOTHVAR) has been defined 
as well, similarly to other total variances [21][23]. Also in this 
case, the total estimator improves confidence for largest ob-
servation intervals τ, but suffers bias that makes cumbersome 
to estimate H and γ in practice. Hence, also TOTHVAR is not 
suitable to our purpose. 

In spite of its highest spectral resolution, HVAR is not able 
to discriminate effectively white from flicker (1/f) noise, simi-
larly to AVAR. This makes plain HVAR not suitable to our 
purpose. Therefore, a Modified Hadamard Variance 
(MHVAR) is proposed and studied in this paper. MHVAR is 
derived by modifying the definition of BC-weighted HVAR 
analogously to MAVAR. In our knowledge, such a modified 
HVAR has been mentioned in literature only few times and 
expounded with little detail (a.k.a. "pulsar variance") [24][25].  

IV. THE MODIFIED HADAMARD VARIANCE 
This section summarizes some of most relevant MHVAR 

properties. Moreover, its behaviour with power-law random 
processes and some common deterministic signals is studied. 

A. Definition and Estimator in the Time Domain 
MHVAR generalizes the principle of MAVAR to higher-

order differences of input data. Given an infinite sequence 
{xk} of samples of a signal x(t), evenly spaced in time with 
sampling period τ0, the MHVAR of order M (MHVAR-M) is 
defined as 
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where the operator <·> denotes infinite-time averaging 
and τ=nτ0 is the observation interval.  

In brief, unmodified HVAR of order M is a kind of variance 
of the Mth difference of input data (but note the division by τ 2 
instead of τ 2M). MHVAR differs from HVAR in the additional 
internal average over n adjacent samples: for n=1 (τ=τ0), the 
two variances coincide. Moreover, let us note that, for M=2, 
MHVAR coincides with MAVAR. Most formulas in this sec-
tion are generalizations of MAVAR formulas [7][8] with M as 
parameter. In most cases, HVAR and MHVAR of order M=3 
have been considered in literature [14][20][21][23] [25]. 

In practice, given a finite set of N samples {xk}, again 
spaced by sampling period τ0, MHVAR can be estimated as 
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with n = 1, 2, ...,  N/(M+1) .  
It should be noted that the point estimate (6), computed by 

averaging N-(M+1)n+1 terms, is a random variable itself. Ex-
act computation of confidence intervals is not immediate and, 
annoyingly enough, depends on the spectrum of the underly-
ing noise [21][24][26][28]. However, in general, along a 
plot of Mod σ2

H,M(τ), confidence intervals are negligible at 
short τ and widen moving to longer τ, where fewer terms are 
averaged. In practice, being N usually in the order of 104 and 
above, Mod σ2

H,M(τ) exhibits random ripple due to poor con-
fidence only at the very right end of the curve. 

B. Equivalent Definition in the Frequency Domain 
The MHVAR time-domain definition (5) can be translated 

to an equivalent expression in the frequency domain. In fact, it 
can be rewritten as the mean square value of the signal output 
by a linear filter, with impulse response properly shaped, re-
ceiving the input signal. In terms of y(t)=x'(t), that is 

 [ ]2
MH

2
H, ),,()()(Mod tnMhtyM ∗=τσ  (7). 

Hence, MHVAR can be equivalently defined in the fre-
quency domain as the area under the PSD of the filter output 

 ∫
∞

=
0
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2
H, ),,()()(Mod dffnMHfS yM τσ  (8) 

where Sy(f) is the one-sided PSD of y(t) and thus 
Sy(f) = Sx(f)·(2πf)2. The square magnitude |HMH|2 takes the as-
ymptotic expression, for n→∞ and keeping nτ0=τ constant: 
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Extrapolating the behaviour of the MAVAR transfer func-
tion (M=2) [7][8], we infer that this limit is approached 
quickly for fairly low values of n (few units). The square mag-

nitude (9) is plotted in Fig. 1 for some values of M, having 
omitted the constant factor 22(M-1)/M! and normalized the Fou-
rier frequency f to the inverse 1/τ of the observation interval. 

Interesting enough is to notice that these transfer functions 
are pass-band, having magnitude shaped with a narrow main 
lobe centred at f ≅ 0.4/τ and very low side lobes. Hence, 
MAVAR and MHVAR gather signal power selectively around 
a frequency proportional to 1/τ (cf. eq. (8)), allowing high-
resolution spectral analysis by computation over a range of τ.  

Also, we notice that the main lobe of the transfer function 
becomes narrower by increasing M, i.e. variances become 
more selective in the frequency domain. Thus, MHVAR-M has 
even better spectral resolution than MAVAR. Nevertheless, it 
is difficult to evaluate analytically its actual improved ability 
in particular to estimate parameters of fractional noise. 

C. Behaviour with Power-Law Random Signals 
It is convenient to generalize the LRD power-law model of 

spectral density (3). As customary in characterization of phase 
and frequency noise of precision oscillators [14], we deal with 
random processes x(t) whose one-sided PSD is modelled as 
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where P is the number of noise types considered, αi and hαi
 

are model parameters (αi, hαi
 ∈ ℜ) and fh is the upper cut-off 

frequency. Such random processes are commonly referred to 
as power-law or fractional noise. 

Power-law noise with -4 ≤ αi ≤ 0 has been revealed in prac-
tical measurements of various physical phenomena, such as 
phase noise of precision oscillators [8][12][14] and Internet 
traffic [1][2][6][7][13], whereas P should be not greater than 
few units for the model being useful. If the process x(t) is sim-
ple LRD (3), then P=1 and -1 < αi < 0. Although values 
αi ≤ -1 yield model pathologies, such as infinite variance and 
nonstationarity, this model is commonly used, considering also 
that measurements have finite duration and bandwidth. 

Under this general hypothesis of power-law PSD, first we 
notice that, since |HMH( M, n, f )|2 in integral relationship (8) 
behaves as ~f 2(M-1) for f→0, MHVAR-M convergence is en-
sured for αi > -1-2M. Then, by considering separately each 
term of the sum in (10) and letting P=1, α=αi, evaluation of 
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Fig. 1: Square magnitude of MHVAR-M asymptotic transfer functions. 
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(8) yields corresponding time-domain functions Mod σ2
H,M(τ). 

Complete formulas for MAVAR (MHVAR-2) are reported in 
[8]. Moreover, Rutman [14] presents a detailed overview about 
recognizing power-law random noise and polynomial drifts in 
time-domain measures, including Allan/Hadamard variances. 

In summary, with x(t) model (10) and in the whole range of 
convergence -1-2M < α ≤ 0, MHVAR-M is found to follow a 
simple power law for any M (ideally asymptotically for n→∞, 
nτ0=τ, but in practice for n>4), i.e. 

 µ
µττσ AM ~)(Mod 2

,H  (11) 

where µ = -3-α. If P>1, it is immediate to generalize (11) to 
summation of powers ∑i

i
i

A µ
µ τ . 

This is a fundamental result. If x(t) obeys (10), a log-log 
plot of Mod σ2

H,M(τ) looks ideally as a broken line made of P 
straight segments, whose slopes µi yield exponents αi = -3-µi 
of the fractional noise terms dominant in different ranges of τ. 

D. Behaviour with Deterministic Signals 
Here, the behaviour of MHVAR is studied when x(t) in-

cludes offset, polynomial drifts, periodic signals and steps, 
which are major examples of nonstationarity in Internet traffic. 

1) Offset and polynomial drift. Let x(t) include an offset and 
polynomial drift, i.e. ∑= =

M
j

j
jtCtx 0)( . By substitution in (5), 

we get that, as obvious, MHVAR is independent on data poly-
nomial drift of order <M, but it reveals a ~tM drift, then assum-
ing trend ~τ 2M-2.  

2) Periodic Signals. Let y(t)=x'(t) be a sine wave at fre-
quency fm, i.e. tfAty m2sin)( π= , with Sy(f) = (A2/2)·δ(f-fm). 
Then, by substitution in (8)(9), we get (for n→∞, nτ0=τ ): 
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Hence, MHVAR ripples with period 2/fm. 
3) Steps. Major examples of nonstationarity in Internet traf-

fic traces are sudden changes of the average bit rate, due for 
instance to traffic rerouting or link capacity adjustment. Our 
simulation results (Fig. 4) show that the actual impact on 
MHVAR of an input step superposed to fractional noise is sig-
nificant only if the step amplitude is very high. However, steps 
in input data affect MHVAR slope (with M even) less than LD. 

V. USING MHVAR FOR ESTIMATING THE HURST PARAMETER 
Let us consider a LRD process with PSD (3) characterized 

by Hurst parameter 1/2 < H < 1. Then, from (4)(11), for any M 
Mod σ2

H,M(τ) follows ~τ µ (ideally for n→∞) with exponent 
µ = 2H-4. In brief, it is possible to estimate the Hurst parame-
ter of a sample realization {xk}, supposed with PSD (3), by the 
following procedure adapted from that of MAVAR [6][7]: 
1) compute Mod σ2

H,M(τ) by estimator (6), based on the data 
sequence {xk} for increasing integer values 1 ≤ n < N/(M+1) 
(we use a geometric progression of ratio 1.1); 

2) estimate its average slope µ in a log-log plot for n>4 and 
excluding also highest values of n, where confidence is 

 lowest, by best fitting a straight line to the curve (e.g., by 
least square error); 

3) if -3 < µ < -2 (i.e., -1 < α < 0, 0 < γ < 1), get the estimate of 
the Hurst parameter as 

  22 += µH  (13). 
Under the more general hypothesis of power-law PSD (10), 

as noticed in Sec. IV.C, then up to P slopes µi can be estimated 
(-3 ≤ µi < 2M-2) to yield the exponents αi = -3-µi 
(-1-2M < αi ≤ 0) of the fαi noise components prevailing in dif-
ferent ranges of τ. 

Finally, some care should be exercised against the presence 
in data analyzed of deterministic components (e.g., big steps), 
which cause trends in Mod σ2

H,M(τ) that may be erroneously 
ascribed to random power-law noise. On the other hand, poly-
nomial drifts in the measured data are not a problem, unless 
their order is greater than M, which is very unlikely. 

VI. SIMULATION RESULTS 
The validity and accuracy of the MHVAR method were 

evaluated by extensive simulations, comparing it to the well-
established wavelet LD technique [2][4] and to the MAVAR 
method [6][7]. All LD results were computed using standard 
scripts [29] (Daubechies’ wavelet with 3 vanishing moments).  

A. Accuracy Evaluation 
The LD, MAVAR and MHVAR (M=3) methods were ap-

plied to LRD pseudo-random data series {xk} of length N, 
generated with power-law one-sided PSD Sx(f) = hfα 
(-1 < α ≤ 0) for assigned values of H = (1-α)/2. The generation 
algorithm is by Paxon [30]. In brief, it is based on spectral 
shaping: a vector of random complex samples, with mean am-
plitude equal to the square root of the desired value of Sx(fk) 
and phase uniformly distributed in [0, 2π], is inversely Fou-
rier-transformed to yield the time-domain sequence {xk}.  

First, 100 independent pseudo-random sequences {xk} of 
length N = 131072, with mx=0 and variance σx

2=1, were gen-
erated for each of the 11 values {Hi} = {0.50, 0.55, ..., 1.00}, 
corresponding to {αi} = {0, -0.1, …, -1.0}. On the resulting 
1100 time series, we applied the MHVAR-3, MAVAR and LD 
methods, getting three sets of estimates }ˆ{ , jiH , for i = 0, 1, 
…, 10 and j = 1, 2, …, 100. We then evaluated the accuracy of 
these estimates compared to the assigned generation values Hi, 
calculating the estimation errors ∆i,j = jiH ,

ˆ -Hi. Furthermore, 
we compared the accuracy attained by the three methods on 
short sequences, when results are impaired by poor confi-
dence. Thus, we repeated the same test as before, but on an-
other set of 1100 sequences of length N = 1024. 

Fig. 2 compares the absolute estimation errors {∆i,j} at-
tained by the three methods on sequences of N = 131072 sam-
ples. For each value Hi, the mean m∆i and standard deviation 
σ∆i, out of 100 estimation errors, are plotted. 

Both MAVAR and MHVAR achieve better confidence than 
LD. Standard deviation of MHVAR estimates is on the aver-
age yet 20% smaller than that of MAVAR. Also, the mean of 
LD estimates departs significantly from the target Hi.  
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Fig. 2: Absolute estimation error of H attained by 3 methods (N=131072). 

Similarly, Fig. 3 compares the estimation errors {∆i,j} on 
sequences of N=1024 samples. On such short sequences, 
MHVAR does not seem to perform better than MAVAR. Yet, 
both MAVAR and MHVAR achieve much better confidence 
than LD, which seems less efficient on short data sequences. 

B. Impact of Steps Superposed to LRD Input Data 
We evaluated MHVAR and LD on LRD data with steps su-

perposed. Sequences of length N = 1024, 131072 were gener-
ated as {xk} = {Auk-Q + nk} (k = 1, …, N), where {uk-Q} is the 
sampled unit step function u(t) delayed Q time units (1<Q<N) 
and {nk} is a pseudo-random LRD series, with mean mn=0 and 
variance σ2

n=1, generated as before with PSD Sn(f) = hfα for 
α = -0.60 (H = 0.80). By varying Q and A, we found that: 
• the step impact on MHVAR is maximum for Q ≅ N/2; 
• for M even, input steps affect MHVAR-M curves only at the 

right end, where the slope should not be considered anyhow 
due to poor confidence; 

• for M odd, input steps do affect MHVAR-M, but with little 
impact on its slope; 

• the step size A must be at least on the order of σn (i.e., very 
evident) to impact significantly MHVAR; 

• input steps affect MHVAR-M (M even) less than LD. 
Fig. 4 shows subsets of curves for N=131072, varying step 

size and delay as 0≤A≤2 and 0<Q<N. In comparing graphs, 
note that MHVAR is plotted over the full range n < N/(M+1), 
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Fig. 3: Absolute estimation error of H attained by 3 methods (N=1024). 

whereas LD omits the last two scales (j>14). 

C. Impact of the Difference Order M 
We evaluated the impact of the order M on the MHVAR es-

timate accuracy, generating 100 independent pseudo-random 
sequences {xk} (N = 1024, 131072) as in Sec. VI.A for each of 
the 11 values {Hi} = {0.50, ..., 1.00}. Fig. 5 plots, for 
2 ≤ M ≤ 10 and N = 1024, 131072, the mean of the 11 mean 
values m∆i and of the 11 standard deviations σ∆i (i=0, …, 10). 

First, we point out that the mean error is virtually 0 and with 
no bias. Moreover, these results confirm the confidence im-
provement of MHVAR-3 compared to MAVAR for N=131072: 
the mean σ∆i of MHVAR-3 is 25% smaller (cf. Fig. 2). This 
confidence gain is significant, since this figure is computed 
over 1100 independent estimates. 

Conversely, we notice that increasing the order M>4 does 
not improve confidence further for N=131072, whereas it even 
worsen it for N=1024. This behaviour on short series is ex-
plained considering that estimator (6) averages N-(M+1)n+1 
terms, each embracing (M+1)n samples, and thus suffers little 
confidence when (M+1)n approaches N.  

In general, the confidence seems not to be improved by in-
creasing the MHVAR order M>4, although HMH(f) becomes 
more selective (cf. Fig. 1). Actually, better spectral resolution 
does not mean necessarily more accurate estimation of the 1/fα 
spectrum slope, which decays uniformly. 
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Fig. 4: MHVAR-3, MHVAR-4 and LD computed on pseudo-random LRD 

sequences {nk} (N=131072, mn=0, σn=1, H=0.80) with added step {Auk-Q}. 
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Fig. 5: Average mean E[m∆i] and standard deviation E[σ∆i] of the H estimation 

errors attained by the MHVAR-M method (2 ≤ M ≤ 10). 

VII. APPLICATION TO A REAL IP TRAFFIC TRACE 
We applied the MHVAR-3 and LD methods on a real IP 

traffic series [bytes/s] measured on a transoceanic link (MAWI 
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Fig. 6: Logscale diagram of a real IP bytes/time trace  
(MAWI Project [31], N=61600, τ0=10 ms, T=616 s). 
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Fig. 7: Modified Hadamard Variance (M=3) of a real IP bytes/time trace  

(MAWI Project [31], N=61600, τ0=10 ms, T=616 s). 

[31]). The data series is made of N=61600 samples, acquired 
with sampling period τ0=10 ms over a measurement interval 
T=616 s. No nonstationary trends, such as steps, are evident.  

Figs. 6 and 7 show respectively the LD with 95%-
confidence intervals and the MHVAR-3 (24 points/decade). 
We notice that the LD trend is more irregular (cf. the lower 
confidence of H estimates in Figs. 2 and 3), whereas MHVAR 
gives a clearer picture of the spectral characteristics of the se-
quence under analysis.  

The MHVAR curve exhibits two regular slopes, namely 
µ1 = -2.89 and µ2 = -1.8. Almost no spurious ripples are visible 
in those intervals, in spite of the high density of points in 
which MHVAR has been computed. 

Hence, two simple power-law (10) components are revealed 
by MHVAR: a main one with α1 ≅ -0.11 (H ≅ 0.555), domi-
nant for 10 ms < τ < 2 s, and a secondary one with α2 = -1.2, 
dominant for 2 s < τ < 20 s. Both estimates are in good agree-
ment with slopes computed on the LD [29]. However, besides 
considering the multislope trend of LD, simulation results re-
ported in this paper ensure that estimates obtained by MHVAR 
are more accurate and with better confidence. 

VIII. CONCLUSIONS 
In this paper, a Modified Hadamard Variance has been pro-

posed for estimating the Hurst parameter H of LRD traffic se-
ries or, more generally, the exponent α of traffic series with 
1/fα power-law spectrum. So far, this variance has been given 
little attention in literature. Thus, MHVAR definition and 
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properties more relevant to this aim have been studied. The 
behaviour of MHVAR with power-law random processes and 
some common deterministic signals has been investigated. 

The H estimation accuracy of MHVAR was evaluated on 
LRD pseudo-random sequences, by comparison to the well-
known wavelet LD technique and to the MAVAR method 
[6][7]. Our extensive simulations showed that MHVAR, 
among the various variances investigated, exhibits the highest 
accuracy and confidence in fractional-noise parameter estima-
tion, even slightly better than MAVAR, at the cost of some 
heavier computational effort, still affordable in most cases.  

Moreover, besides its excellent spectral resolution capabili-
ties, MHVAR has the advantage of converging also on very-
low frequency fractional noise (e.g., with PSD ~f-5 or ~f-6) as 
well as being applicable on data including polynomial drift. 
Also, MHVAR proved quite robust against steps in input data: 
the actual impact of steps on Mod σ2

H,M(τ) is limited or negli-
gible in most practical cases. 

Finally, MHVAR was applied on a real IP traffic trace. 
Compared to LD, MHVAR gave a clearer spectral characteri-
zation of the traffic series analyzed. Two simple power-law 
noise components were revealed, with PSD k1/f 0.11 + k2/f 1.2. 
The first term, dominant for τ < 2 s, is LRD with H ≅ 0.555. 

In conclusion, we point out that MHVAR is not proposed as 
ultimate tool for traffic analysis. Rather, we believe that it may 
complement usefully other established techniques, e.g. 
MAVAR and LD, due to several advantages. Among them, we 
highlight in particular: 
1) excellent spectral resolution (cf. Fig. 1);  
2) efficient use of input data, yielding excellent confidence in 

parameter estimation of power-law processes (10) (e.g., 
LRD), even slightly better than MAVAR (cf. Figs. 2 and 3); 

3) convergence to finite values for all types of power-law 
processes (10) with α > -1-2M (αi∈ℜ); 

4) insensitivity to polynomial drifts of order up to M-1; 
5) robustness against various other common nonstationary (de-

terministic) components in data analyzed (e.g., steps). 
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