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Abstract  Long-range dependence (LRD) is a widely verified 
property of Internet traffic, which severely impacts network per-
formance yielding longer queuing delays. Moreover, LRD is al-
most ubiquitous and very hard to remove or control. In this 
work, we investigated by thorough simulation the effect of sched-
ulers on traffic LRD. We analyzed the output traffic of schedulers 
merging LRD flows according to various service policies, viz. 
plain FIFO, Static-Priority, Earliest-Deadline-First and General 
Processor Sharing. First, we noticed that traffic LRD is not af-
fected much by crossing the scheduler, for any type of service pol-
icy. Second, we showed that LRD also propagates across different 
service classes with any policy except balanced GPS, which en-
sures complete separation between classes. This phenomenon 
may explain in part why LRD is so widespread in Internet traffic. 

Index Terms  Communication system traffic, fractional noise, 
Internet, long-range dependence, queuing analysis, traffic control 
(communication). 

I. INTRODUCTION

Internet traffic exhibits self-similarity (SS) and long-range 

dependence  (LRD) [1][2].  These properties emphasize 

long-range time-correlation between packet arrivals. Frac-

tional noise and fractional Brownian motion models are often 

used to describe such behaviour of Internet traffic series, e.g. 

cumulative or incremental bit count transmitted over time. 

In a SS random process, a dilated portion of a realization, 
by the scaling Hurst parameter H, has same statistical charac-

terization than the whole. On the other hand, LRD is a long-

memory property, usually equated to an asymptotic power-law 

decrease of the power spectral density (PSD) as ~f -α (for f→0)
or, equivalently, of the autocovariance function. Under some 

hypotheses [1], the integral of a LRD process is SS with H re-

lated to α (e.g., fractional Brownian motion, integral of frac-
tional Gaussian noise). 

It has been well recognized [3] [6] that traffic LRD yields 

long queues in network buffers. In the case of fractional Gaus-

sian traffic, for example, it has been found [3][4] that the 

queue tail is Weibull-distributed, i.e. the buffer occupancy Q
exceeds a given threshold q with asymptotic probability 

P{Q > q} ~ exp( -β q1-α ), where β is a positive function of α
and of other network parameters. The Weibull queue length 

distribution departs significantly from the plain exponential 

resulting in case of Poisson input (α = 0). In particular, when 

α tends to 1, the Weibull distribution flattens and average and 
variance of the queuing delay even tend to infinite. 

LRD is a property of network traffic that is almost ubiqui-

tous and very hard to remove or control. In a previous work, 

we showed by simulation that LRD cannot be reduced by 

standard leaky-bucket (LB) policers and shapers [7][8], unless 

by dropping a large fraction of traffic.  
In this work, we investigated by simulation the effect of 

schedulers on traffic LRD. We studied the output traffic of 

schedulers merging LRD flows according to various service 

policies, viz. plain FIFO, Static-Priority, Earliest-Deadline-

First and General Processor Sharing. We analyzed the output 

traffic in order to determine if, and under what conditions: 1) 

LRD input flows are still LRD at the scheduler output; 2) non-

LRD flows merged with LRD flows are tainted by LRD. 

We proceeded along the way marked by [9], where the per-

sistence of LRD at the output of a single-server queue was 

proved analytically. In a subsequent work [10], it was also 
proved that in various queuing systems (viz., G/GI and GI/GI) 

the output of the system is LRD if the input is LRD. More re-

cently, it was shown [11] that SS traffic flows merged by a 

simple scheduler retain same self-similarity.  

In this paper, nevertheless, we extend such results, by focus-

ing on multi-class scheduling devices with significant practical 

importance. In particular, by extensive simulation, we examine 

the interaction between merged LRD and non-LRD flows.  

II. SELF-SIMILARITY AND LONG-RANGE DEPENDENCE

A random process X(t) (e.g., cumulative packet arrivals in 

time interval [0, t]), is said to be self-similar (SS), with scaling 

parameter of self-similarity or Hurst parameter H>0, H∈ℜ, if 

)()( atXatX H
d

−=  (1) 

for any a>0, where =d denotes equality for all finite-

dimensional distributions [1]. In other terms, the statistical de-

scription of X(t) does not change by scaling its amplitude by 

a-H and its time by a. Most SS processes are not stationary. 

The class of SS processes is usually restricted to that of self-
similar processes with stationary increments (SSSI), which are 

“integral” of some stationary process. For example, consider 

the δ-increment process of X(t), defined as Yδ(t) = X(t) - X(t-δ)

(e.g., packet arrivals in the last δ time units). For a SSSI proc-

ess X(t), Yδ(t) is stationary and 0 < H < 1 [1]. 
Long-range dependence (LRD) of a process is defined by 

an asymptotic power-law decrease of its autocovariance and 

PSD [1]. Let Y(t) be a 2nd-order stationary random process. 

Y(t) exhibits LRD if its autocovariance follows asymptotically  
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or, equivalently, its two-sided PSD follows asymptotically 

10,0for~)( 2 <<→− αα
ffcfSY  (3). 

In general, a random process with non-integer power-law 

PSD is also known as fractional (not necessarily Gaussian) 
noise. SSSI processes X(t) with 1/2 < H < 1 have LRD incre-

ments Y(t), with [1] 

12 −= Hα  (4). 

III. ESTIMATING THE H AND α PARAMETERS OF LRD SERIES 

USING THE MODIFIED ALLAN VARIANCE

For estimating precisely the H and α parameters of LRD 
traffic series, we used the Modified Allan Variance (MAVAR) 

[12]. Here, only the most relevant MAVAR properties to this 

aim are briefly recalled for ease of understanding. 

MAVAR is a well-known time-domain quantity, conceived 
in 1981 for frequency stability characterization of precision 

oscillators [13] [17] by modifying the definition of the origi-

nal Allan Variance (AVAR) [18]. MAVAR has been proven to 

feature superior spectral sensitivity and accuracy in LRD pa-

rameter estimation, coupled with excellent robustness against 

data nonstationarity (e.g., drift and steps) [12].  

Given a finite set of N samples {xk} of a signal x(t), evenly 

spaced by sampling period τ0, MAVAR can be estimated using 
the ITU-T standard estimator [17][19] 
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where the observation interval is τ = nτ0 and n = 1, 2,..., N/3 .
MAVAR is a kind of variance of the 2nd difference of input 

data, including an internal average over n adjacent samples.  

A recursive algorithm for fast computation of this estimator 

exists [17], which cuts down the number of operations needed 

to compute it for all values of n to ~N 2 instead of ~N 3, or to 

~N log N if MAVAR(nτ0) is computed only for n = 2k (k = 0, 1, 

…, log2N ) as in the wavelet logscale diagram [1][12]. 

Fractional noise with one-sided PSD ~1/f α, for 0 ≤ α ≤ 4, 
has been revealed in practical measurements of various phe-

nomena, such as phase noise of precision oscillators 

[17][18][20] and Internet traffic [1]. Although values α ≥ 1 
yield model pathologies, such as infinite variance and non-

stationarity, this model is common, considering also that real-

world measurements have finite duration and bandwidth. 

Under this power-law model of input data and in the whole 

range of MAVAR convergence 0 ≤ α < 5, MAVAR itself is 
found following the simple power law (ideally asymptotically 

for n→∞, nτ0=τ, but in practice for n>4) 

αµττσ µ
µ +−= 3,~)(Mod

2 Ay  (6). 

Therefore, the slope µ of Mod σy
2(τ) in a log-log plot can be 

estimated (e.g., by linear regression) to yield the exponent 

α = 3+µ of the fractional noise that is dominant in input data. 

From (4), if α < 1, we also obtain H = µ /2+2. These estimates 

of H and α were demonstrated to be very accurate, unbiased 
and robust against nonstationarity in data analyzed (viz. drifts, 

periodic trends and steps) [12].  

This procedure is analogous to that of the 2nd-order logscale 

diagram technique based on wavelet analysis [1][21], which 

analyzes data over a range of scales by observing the power-

law behavior of the wavelet detail variances across octaves. 

IV. MODEL OF SCHEDULERS AND LRD TRAFFIC

In this paper, we study the output traffic of infinite-buffer 

plain FIFO, Static-Priority (SP), Earliest-Deadline-First
(EDF) and General Processor Sharing (GPS) schedulers 

merging LRD flows. Other types of schedulers might be con-

sidered as well. However, in this work, we have selected these 

due to their significant practical relevance. 

In the SP scheduler, traffic flows are divided into service 

classes, numbered from 1 to n. The scheduler is provided with 

n queues, one per service class. All traffic flows in service 

class i (1 i n) feed the i-th queue. The queue index i deter-

mines the service priority: at the end of each packet transmis-

sion, the scheduler fetches next packet from the non-empty 
queue with smallest i.

In the EDF scheduler, traffic flows are alike divided into 

service classes, numbered from 1 to n. Any service class i is 

characterized by its service deadline di [seconds]. At the end of 

each packet transmission, the scheduler fetches, among the 

packets waiting for transmission, the packet with the smallest 

residual time. This is done by marking each packet on its arri-

val with the time stamp indicating its arrival time tk. At time t,
the residual time of this packet, belonging to service class i, is 

calculated as tk + di – t, representing the amount of time left be-

fore the packet service deadline expires. Note that the packet 

residual time can be negative, indicating that the service dead-
line has already expired. Smaller residual time means more 

urgent need of service: this is the reason why the packet with 

the smallest residual time is selected for service. 

In the GPS scheduler, each service class i is assigned a 

weight wi (with no loss of generality, we assume 1=k kw )

and is guaranteed to receive at least a share k ki ww  of the 

available capacity. If any class uses less than its share, the ex-

tra bandwidth is shared by all other classes proportionally to 

their weights. A formal description of GPS is given in [22]. 
For example, let us consider the case with n = 2 service 

classes. Note that GPS with w1 = 1, w2 = 0 and EDF with 

d1 = 0, d2 =  are equivalent to SP, while EDF with d1 = d2 is 

equivalent to plain First-In-First-Out (FIFO). Note also, how-

ever, that GPS with w1 = w2 is not equivalent to FIFO. 

As far as the LRD traffic model is concerned, in this work 

we focused on fractional Gaussian traffic (fGt), being this 

model commonly adopted in literature. Our procedure of traf-
fic synthesis, detailed in [7], generates LRD pseudorandom se-

ries {xk} of fractional Gaussian traffic fGtR(α, mx, σx
2) with 

length N, PSD ∝1/f α for assigned values of α with 0 α < 1, 

normally-distributed samples, mean mx and variance σx
2, recti-

fied to replace negative samples with zero. The sequence {xk}
represents the incremental data count [bit/s] input at each time 

unit into the scheduler under study (i.e., the input traffic rate). 
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V. SIMULATION RESULTS

In our simulations, we have studied FIFO, SP, EDF and 

GPS schedulers with n = 2 service classes. We denoted traffic 

flows of classes 1 and 2 as x1(t) and x2(t), respectively. We set 

the time unit τ0 = 1 ms, the mean of traffic rate mx = 2279 bit 

per time unit (i.e., 2.279 Mbit/s) and its deviation σx = 773.9 

bit per time unit (i.e., 773.9 kbit/s), as in [4]. We varied the α
parameter of x1(t) and x2(t) liberally in range 0 α < 1, denot-

ing it as α1 and α2, respectively. The scheduler buffer size is 
infinite. The capacity of the output line has been set C = 4.85 

Mbit/s (i.e., mx/C ≅ 0.47). 
In the SP scheduler, x1(t) has strict service priority over 

x2(t). In the EDF scheduler, the service deadlines have been set 

d1 = 50τ0 and d2 = 100τ0 (unbalanced EDF) and d1 = d2 (bal-
anced EDF, i.e. FIFO). In the GPS scheduler, finally, weights 

have been set w1 = w2 = 0.5 (balanced GPS) and w1 = 2/3, 

w2 = 1/3 (unbalanced GPS). 
Therefore, we generated input traffic fGtR series x1,IN(t) and 

x2,IN(t) made of N = 223 samples, which were fed into schedul-

ers as described before. Then, we analyzed the output traffic 

flows x1,OUT(t) and x2,OUT(t), corresponding to input flows 

x1,IN(t) and x2,IN(t), respectively.  

Traffic series were analyzed in both time and frequency 

domains, respectively by MAVAR and classic FFT-based spec-

tral estimation (periodogram over 8192 points, having divided 

the series in 1024 segments with Hamming data windowing 

[23]). Estimation of the LRD parameter α was performed by 
way of MAVAR, due to its unparalleled accuracy. 

A. Sample Plots of PSD and MAVAR 

Figs. 1, 3 and 5 show the PSD computed on sample traffic 

series at the input and output of the SP, unbalanced EDF and 

balanced GPS schedulers, respectively, for α1,IN = 0.8 and 

α2,IN = 0. Moreover, Figs. 2, 4 and 6 show the MAVAR com-
puted on sample traffic x2,OUT(t) at the output of same schedul-

ers, for α1,IN = 0.0, 0.2, 0.4, 0.6, 0.8 and α2,IN = 0. 
1) SP Scheduler: x2(t) does not hamper the service of x1(t), 

since it has lower service priority. Thus, x1(t) sees the sched-

uler as a single-server system with the whole output capacity 

fully available. As expected, Sx1,OUT(f) is nearly identical to 

Sx1,IN(f): x1(t) is distorted negligibly by crossing the scheduler. 

On the contrary, the flow x2(t) is heavily hampered by x1(t). 
This hindrance yields an interesting effect: as visible in Fig. 1, 

the flow x2(t) exhibits LRD at the output even if it is white at 

the input, due to interference from the higher-priority LRD 

flow x1(t). MAVAR results in Fig. 2 better show that the more 

x1(t) is LRD, the more x2(t) becomes LRD at output (the slope 

of MAVAR is lower): LRD propagates from class 1 to class 2.  

2) Unbalanced EDF Scheduler: Unlike the hard priority of 

SP, EDF follows a softer approach. Being deadlines d1 < d2,

x1(t) has soft precedence over x2(t): contrary to SP, a traffic 

unit of x2(t) may be served even if units of x1(t) are still wait-

ing for service. This occurs when the residual time of a unit of 
x2(t) is small, because it has waited for service long. 

This different behaviour is evident comparing Figs. 1 and 3: 

in the EDF scheduler, the PSD of both x1(t) and x2(t) at output 

differs from that at input. The soft-priority policy yields a mu-

tual interference between x1(t) and x2(t) and thus significant 

LRD exchange between traffic classes: the LRD of x1(t) is di-

minished by merging white x2(t), while x2(t) gets tainted by 

some LRD from x1(t) (but less than in the SP scheduler, as 

visible also comparing slopes of MAVAR in Figs. 2 and 4). 

3) Balanced GPS Scheduler: Here, the two flows share 

fairly the output capacity. Their interaction, in terms of LRD 

exchange, is minimal: both signals do not exhibit a change of 

the PSD slope at low frequencies crossing the scheduler (Fig. 

5), while MAVAR of output traffic x2,OUT(t) is not affected by 

the LRD of x1,IN(t) (Fig. 6). 

B. Characterization of Traffic LRD at Scheduler Output 

Thorough investigation is needed for characterizing the be-

haviour outlined qualitatively in the previous section. 

Therefore, for each of the schedulers considered, we varied 

liberally the LRD parameters of input traffic flows x1(t) and 

x2(t) in ranges 0 α1,IN < 1 and 0 α2,IN < 1. After each simu-

lation, we estimated the LRD parameters α1,OUT and α2,OUT of 
output flows by way of MAVAR (see Sec. III). The average 
slope of MAVAR curves was estimated excluding the first and 

last decade of τ values [12] and neglecting, for the sake of 
simplicity, slight changes of slope as those visible in Figs. 2, 4 

and 6 for α1,IN = 0.4, 0.6 (this is equivalent to approximating a 

two-terms power-law PSD h1/f
α

1 + h2/f
α

2 as ~h3/f
α

3 with 

α1 < α3 < α2 [12]). For each parameter setting, finally, we ran 
10 independent simulations, to obtain also grand averages and 

confidence intervals of α1,OUT and α2,OUT estimates. 
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Fig. 1: PSD of input and output traffic (SP, α1,IN = 0.8, α2,IN = 0.0). 
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Figs. 7 through 10 give a synoptic view of our simulation 

results, in the form of estimates of αi,OUT as a function of αj,IN.

Bars of 95%-confidence intervals αi,OUT ± δ are not marked, to 
not make plots confused. However, in most cases they are neg-

ligible (almost always, δ < 0.01). 
From Figs. 7 and 10, we notice that the LRD of both flows

x1(t) and x2(t) is not affected much by crossing the scheduler, 

for any type of service policy except the balanced GPS, which 

slightly increases it. From Figs. 8 and 9, instead, we notice 

significant transfer of LRD between flows, with all service 

policies except balanced GPS, confirming preliminary consid-

erations made in Sec. V.A. In summary: 

• SP, unbalanced GPS: the lower-priority flow x2(t) is tainted 

by LRD from x1(t) when α1,IN > 0.5; conversely, the higher-
priority flow x1(t) is not affected by the LRD of x2(t); 

• unbalanced and balanced EDF (FIFO): x1(t) is tainted by 

x2(t) LRD when α2,IN > 0.5 and vice versa when α1,IN > 0.5; 

• balanced GPS: there is no LRD exchange between flows. 

VI. CONCLUSIONS

In this paper, we investigated by thorough simulation the ef-

fect of traffic schedulers on the 1/fα power-law spectrum of 

merged LRD flows. MAVAR analysis allowed to estimate the 

LRD of flows at the output of schedulers with better accuracy 

than in any previous simulation study.  

First, we noticed that the LRD of traffic flows is not af-

fected much by crossing the scheduler, for any type of service 
policy except balanced GPS, which slightly increases it. Sec-

ond, we demonstrated that LRD also propagates across differ-

ent service classes with FIFO, SP, unbalanced EDF and unbal-

anced GPS. Only balanced GPS ensures complete separation 

between classes. The detailed results presented in Sec. V.B 

provide considerable insight into this phenomenon. 

In summary, we showed that high-LRD traffic flows in 

many cases taint other non-LRD flows that share the output 

link capacity of schedulers with them. The actual amount of 

this LRD propagation depends, among other factors, on the 

scheduler service policy. This phenomenon may explain, in 
part, why LRD is so ubiquitous and widespread in Internet 

traffic. 
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