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Abstract   Long-range dependence (LRD) is a widely verified 
property of Internet traffic, which severely affects network per-
formance yielding longer queuing delays. Token-bucket policers 
are commonly proposed to enforce the statistical profile of input 
traffic, but they can hardly reduce LRD and thus can be ineffec-
tive to protect service level agreements against LRD increase in 
input traffic. In this paper, we investigate by simulation the queu-
ing performance in a downstream scheduler of LRD traffic regu-
lated by token-bucket policers. We compare the delay distribu-
tions of regulated and unregulated LRD flows. We demonstrate 
that policers reduce significantly the downstream queuing delay, 
although they do not alter much the 1/f α

 spectrum of regulated 
traffic. We observe also that the policed traffic does not obey a 
plain fractional Gaussian traffic model: first, it is not Gaussian 
anymore; moreover, also its third-order two-lags covariance is al-
tered by the policer. Finally, we point out that policers can reduce 
noticeably the negative impact of traffic LRD increase on queu-
ing delay, although they can diminish actual LRD only slightly. 

Index Terms  Communication system traffic, fractional noise, 
Internet, long-range dependence, queuing analysis, traffic control 
(communication). 

I. INTRODUCTION

Self-Similarity (SS) and Long-Range Dependence (LRD) 

are  widely  verified  properties of  Internet traffic  [1][2]. In a 

SS random process, a dilated portion of a realization, by the 
scaling Hurst parameter H, has same statistical characteriza-

tion as the whole. On the other hand, LRD is a long-memory 

property, usually equated to an asymptotic power-law decrease 

of the power spectral density (PSD) as ~f -α (for f→0) or, 
equivalently, of the autocovariance function. Under some 

common hypotheses [1], the integral of a LRD process is SS 

with H related to α (e.g., fractional Brownian motion, integral 
of fractional Gaussian noise). 

It is well recognized [3] [6] that traffic LRD yields longer 

queuing delay in network buffers. In the case of fractional 

Gaussian traffic, for example, the delay tail is Weibull-

distributed [3][4], i.e. the delay D exceeds a given threshold d
with asymptotic probability 

∞→≈>
−− dedDP d for)(

1 αβ  (1) 

where β > 0 is function of α and other network parameters. 

Thus, the delay tail depends significantly on α: remarkably, 

when α  1, the Weibull distribution flattens and average and 
variance of the queuing delay even tend to infinite. 

LRD is an almost ubiquitous property of network traffic that 

is very hard to remove or control by Token-Bucket (TB) traffic 

regulators [7] [12]. In previous papers [13][14], we demon-

strated by simulation that TB policers and shapers can hardly 

reduce traffic LRD (i.e., its α parameter) and that statistical 
bounds of network delay may not be met against increase of 
LRD of offered traffic. This leads to suspect that providers 

might be unable of guaranteeing statistical delay bounds, if 

customers offer LRD traffic exhibiting large swings of α. We 
provided empirical evidence of this claim in [13][14]. 

In this paper, we investigate further the queuing perform-

ance in a downstream scheduler of LRD traffic regulated by 

token-bucket policers. We compare the delay tail distributions 

of regulated and unregulated LRD flows, in order to determine 

whether they differ and present different probability of violat-

ing delay thresholds, even with similar values of α.
At least to our knowledge, this aspect has been rather over-

looked in literature till now. Cited papers [7] [12] focused 

mainly on the limited effect of token-bucket policers on LRD 

of traffic, not emphasizing its behaviour in following queues.  

A notable exception is the paper [8], which studied the 
queuing behaviour of LRD traffic regulated by a leaky-bucket 

policer. In this work, a leaky bucket followed by a scheduler 

with large finite buffer was studied analytically, characterizing 

the distribution of the time until buffer overflow and proving 

that the regulator does make the system overflow less often, 

whereas long-range dependence still makes its presence felt. 

Actually, these theoretical results are asymptotic, describing 

the system behaviour when the scheduler finite buffer size 

tends to infinite, lacking however a quantitative analysis of the 

reduction of the buffer overflow probability due to traffic 

regulation. In our study, on the other hand, we evaluate the 
distribution of the delay in a scheduler with infinite buffer, fol-

lowing an empirical approach based on simulations. This way, 

we estimate delay bounds and associated violation probabili-

ties, which are very important from a practical standpoint. 

II. SELF-SIMILARITY AND LONG-RANGE DEPENDENCE

A random process X(t) (e.g., cumulative packet arrivals in 

time interval [0, t]), is said to be self-similar (SS), with scaling 

parameter of self-similarity or Hurst parameter H>0, H∈ℜ, if 

)()( atXatX H
d

−=  (2) 

for any a>0, where =d denotes equality for all finite-

dimensional distributions [1]. In other terms, the statistical de-

scription of X(t) does not change by scaling its amplitude by 

a-H and its time by a. Most SS processes are not stationary. 
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Fig. 1: Traffic policer followed by a FIFO scheduler. 

The class of SS processes is usually restricted to that of self-
similar processes with stationary increments (SSSI), which are 

“integral” of some stationary process. For example, consider 

the δ-increment process of X(t), defined as Yδ(t) = X(t) - X(t-δ)

(e.g., packet arrivals in the last δ time units). For a SSSI proc-
ess X(t), Yδ(t) is stationary and 0 < H < 1 [1]. 

Long-range dependence (LRD) of a process is defined by 

an asymptotic power-law decrease of its autocovariance and 

PSD [1]. Let Y(t) be a 2nd-order stationary random process. 

Y(t) exhibits LRD if its autocovariance follows asymptotically  

10,for~)(
1
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cRY  (3) 

or, equivalently, its two-sided PSD follows asymptotically 

10,0for~)( 2 <<→− αα
ffcfSY  (4). 

In general, a random process with non-integer power-law 

PSD is also known as fractional (not necessarily Gaussian) 

noise. SSSI processes X(t) with 1/2 < H < 1 have LRD incre-

ments Y(t), with [1] 

12 −= Hα  (5). 

III. SOURCE TRAFFIC REGULATION FOR GUARANTEEING QOS

In Internet models of Quality of Service (QoS), the custom-
er contracts with the Internet Service Provider (ISP) for the 

transport of flows under a Service Level Agreement (SLA), 

specifying the QoS requirements that the ISP must meet. In 

this paper, we focus on statistical delay bounds [15], common-

ly defined as the maximum fraction of packets Pmax exceeding 

a given end-to-end delay limit dmax.

The contract between customer and ISP includes a Traffic 
Conditioning Agreement (TCA), which describes the statistical 

profile of traffic allowed to enter the network in order to guar-

antee the SLA. The ISP allocates resources based on TCA pa-

rameters, which usually include [16]: average rate [byte/s], 
burst size [byte], peak rate [byte/s], minimum policed unit 

[byte] and maximum packet length [byte].  

To enforce the TCA, a common solution is using traffic 

regulators based on the token-bucket scheme. If the source 

traffic complies with the TCA (in-profile traffic), it is trans-

ferred unaltered by the regulator. Otherwise, if the traffic vi-

olates the TCA (out-of-profile traffic), it is dropped (policer)

or delayed in an internal buffer (shaper), until it is possible to 

inject it into the network complying with the TCA. 

IV. MODELS OF THE SYSTEM AND LRD TRAFFIC

We adopted a fluid traffic model [4], where traffic units are 

bits. As shown in Fig. 1, a TB policer is followed by a First-In-

First-Out (FIFO) scheduler with infinite buffer and link capac-

ity C [bit/s]. The TB policer has a counter of credits (tokens) 

with maximum value b [bit] (token bucket size). The credit 

counter is increased every 1/r s, where r is the token rate. One 
bit of offered traffic is allowed through the policer if the 

counter is positive; then, the counter is decremented. Other-

wise, if the counter is equal to zero, the bit is dropped. 

The r parameter controls the average rate of the through 

traffic, as the policer cannot output more than r bit/s on the av-

erage. The b parameter, instead, controls the length of output 

traffic bursts. If the token counter is full (i.e., it holds b to-

kens), the policer can output a burst of b bits at maximum rate. 

After that, it must stop to wait further tokens.  

As far as the LRD traffic model is concerned, in this paper 

we focus on fractional Gaussian traffic (fGt), being this model 
commonly adopted in literature. Our procedure of traffic syn-

thesis, detailed in [13], generates LRD pseudorandom series 

{xk} of fractional Gaussian traffic fGtR(α, mx, σx
2) with length 

N, PSD ∝1/f α for assigned values of α with 0 α < 1, nor-

mally-distributed samples, mean mx and variance σx
2, rectified 

to replace negative samples with zero. The sequence {xk}

represents the incremental data count [bit/s] input at each time 

unit into the policer under study (i.e., the input traffic rate). 

Also other models and methods have been proposed in lite-

rature to generate pseudo-random LRD traffic. To be safe, we 

repeated most simulations synthesizing multifractal log-

normal input traffic instead. In all cases, we obtained substan-

tially same results as those presented in this paper. 

V. SIMULATION RESULTS

We generated fGtR sequences {xk} made of N = 223 samples. 

We set the time unit τ0 = 1 ms, the mean mx = 2279 bit per 

time unit (i.e., 2.279 Mbit/s) and the deviation σx = 773.9 bit 

per time unit (i.e., 773.9 kbit/s), as in [4]. We varied α liber-

ally in range 0 ≤ α < 1.  
As in Fig. 1, the traffic x(t) was fed into the policer. The 

regulated traffic xP(t) was then analyzed, characterizing it for 

various values of the token rate r and size b. In particular, we 

estimated the value of its LRD parameter αP and we studied 
the distribution of its queuing delay in the scheduler buffer. 

For estimating accurately α, we used the Modified Allan 
Variance (MAVAR) [17]. MAVAR is a well-known time-

domain quantity, conceived in 1981 for frequency stability 

characterization of precision oscillators [18] [21] by modify-

ing the definition of the original Allan Variance. MAVAR was 

proven to feature superior spectral sensitivity and accuracy in 

LRD parameter estimation, coupled with excellent robustness 

against data nonstationarity (e.g., drift and steps) [17]. 

Fig. 2 plots the loci of the (r/mx, b/(σxτ0)) pairs (contour 

lines), for which the same αP was estimated (grand average 
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Fig. 2: Contour lines of αP(r/mx, b/(σxτ0)) estimated on the traffic regulated by 

a TB policer fed with fGtR (α = 0.90). 

out of 10 independent simulations) on the traffic regulated by 

the policer with α = 0.90 at input (cf. less accurate graphs in 

[13][14]). First, we notice that αP < α. For r/mx  and 

b/(σxτ0) , we have αP α. Also, αP decreases as r/mx and 

b/(σxτ0) are smaller. Finally, αP(r, b) is non-monotonic: note 

the steep cliff for 1 < b/(σxτ0) < 3 that takes, after the edge at 

b/(σxτ0) = 3, to the wide, gently hollow plateau. 
We know from theory [4] that the queuing delay of fGt is 

distributed as eq. (1), where α determines the tail decrease 
rate. When the policer operates in normal conditions (i.e., 

r/mx > 1 and b/(σxτ0) > 10), the traffic dropping ratio is low 

and αP ≅ α (Fig. 2). Thus, we would expect intuitively that the 
queuing delay too of xP(t) is distributed likewise that of x(t). 

System simulation sharply contradicts this conjecture. For 

r/mx = 1.0, 1.1, 1.2 and b/(σxτ0) = 18.3 (three dots marked in 
Fig. 2), we obtained about the following values for parameters 

(mxP/mx, σxP/σx, αP) of the policed traffic xP(t): (0.90, 0.70, 
0.806), (0.94, 0.80, 0.838) and (0.97, 0.88, 0.862), respec-

tively. We fed xP(t) into the FIFO scheduler with capacity set 
to have uniform load mxP/C = 0.80. The distributions of the re-

sulting queuing delay in these three configurations are plotted 

in Fig. 3, as dotted lines labelled "policed traffic". 

Then, we generated other fresh fGtR series xS(t), with same 

three parameters as those estimated on policed traffic xP(t) in 

the settings above, and fed them directly without regulation 

into the same FIFO scheduler. The resulting delay distributions 

are plotted in Fig. 3, as solid lines labelled "synthetic fGtR". 

The difference between delay distributions of xP(t) and xS(t)
plotted in Fig. 3 is dramatic: the delay tail of policed traffic 

xP(t) is much shorter than that of fresh fGtR traffic xS(t) with 

same parameters mxS = mxP, σxS = σxP, αS = αP. For example, 
for r/mx = 1.2, delay thresholds exceeded with probability 10-3

are about 6 ms and 7 s, respectively for xP(t) and xS(t), with 

traffic dropping ratio around 3%. In other words, the policer 

cuts down the downstream queuing delay by three orders of 

magnitude, by dropping just a little percentage of data, yet 

without diminishing traffic LRD significantly. 

Thus, we proceeded to ascertain whether there exists any 

fGtR traffic xS(t) that yields same queuing delay, fed directly 

into the downstream FIFO buffer, than policed traffic xP(t)

with mxS = mxP, σxS = σxP for any αS αP.
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Fig. 3: Distribution of queuing delay in the FIFO buffer of policed traffic xP(t)

and synthetic fGtR traffic xS(t) with same mxS = mxP, σxS = σxP, αS = αP.
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and synthetic fGtR traffic xS(t) with same mxS = mxP, σxS = σxP and various αS.

In Fig. 3, we selected the delay distribution of xP(t), i.e. po-

liced fGtR traffic with α = 0.90 and r/mx = 1.2 (empty round 

markers, mxP/mx = 0.97, σxP/σx = 0.88, αP = 0.862). This delay 
distribution is plotted again in Fig. 4 as a thick line. Then, we 

generated 9 new fresh fGtR series xS(t) with same parameters 

mxS = mxP, σxS = σxP but varying 0.0 αS  0.9. Their resulting 
delay distributions are plotted in Fig. 4 as thin lines. Fig. 4 

shows that there is no fGtR traffic series xS(t) with same pa-

rameters mxS = mxP, σxS = σxP that, for any value of αS, yields 

similar queuing delay distribution than policed traffic xP(t). 
In [13][14], we have shown that if the input traffic exhibits 

increasing LRD parameter α, still keeping same average rate 

and variance, policers deliver traffic downstream with α al-
most unaffected, causing possible disruptions of end-to-end 

delay SLA. While this is certainly true, now we can show also 

that the regulation action of the policer is however effective to 

improve the queuing performance in downstream schedulers. 

We studied the distribution of queuing delay in the FIFO 

scheduler of fGtR traffic for various α, with and without poli-
cer regulation. The scheduler link capacity was set to have uni-

form load mx/C = 0.80 or mxP/C = 0.80 for both policed and 

unpoliced traffic series. The policer parameters were set 

r/mx = 1.2 and b/(σxτ0) = 18.3. Simulation results are shown in 

Fig. 5. Even if the policer does not reduce significantly the α
parameter of regulated traffic (Fig. 2), the resulting queuing 

delay in the downstream scheduler is much lower. 
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with r/mx = 1.2 and b/(σxτ0) = 18.3, and of synthetic fGtR xS(t) with same 

parameters mxS = mxP, σxS = σxP, αS = αP as of xP(t). 

For example, let us assume that the SLA specifies 

P(D > 4 ms) ≤ 10-4, while the customer supplies fGtR traffic 

with α = 0.2. By inspection of Fig. 5 (τ0 = 1 ms), we see that 
this SLA is fulfilled. Nevertheless, if input traffic x(t) keeps 

same mx and σx but increases LRD to α = 0.6, we observe 
again from Fig. 5 that the SLA is now violated, resulting to 

disruption of the required QoS. However, after this LRD in-

crease, it is worth noticing that P(D > 4 ms) = 5⋅10-4 for po-
liced traffic, while without regulation it is greater by two or-

ders of magnitude. This positive impact of the policer is even 

sharper assuming LRD increase to α = 0.9. In Fig. 5, it is also 

worth noticing that any LRD increase for α > 0.5 does not 
augment P(D > d) significantly on the policed traffic, while 

the effect on unpoliced traffic is dramatic.  

To summarize, Figs. 3 and 4 show that the queuing delay of 

policed traffic xP(t) is much lower than that of synthetic fGtR

xS(t) with same parameters mxS = mxP, σxS = σxP, αS = αP. In 

particular, Fig. 4 shows that there is no fGtR traffic series xS(t)

with same mxS = mxP, σxS = σxP that, for any value of αS, yields 
similar queuing delay distribution than policed traffic xP(t). 

Based on this evidence, we conclude that the plain fGtR

model is not adequate to describe the policed traffic xP(t), even 

when the policer operates in normal conditions (i.e., r/mx > 1 

and b/(σxτ0) > 10), the traffic dropping ratio is low and αP ≅ α
(Fig. 2), at least as far as evaluation of queuing performance in 

downstream schedulers is concerned. 
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(mx = 2.279 kbit/ms, σx = 773.9 bit/ms, α = 0.9) and of the policed traffic 

series {xPk} for r/mx=1.2, 1.3 and b/σx=18.3. 

To prove further that the policer in such configuration does 
not affect much the spectral characteristics of regulated traffic 

(i.e., its second-order statistics), in Fig. 6 we compare the 

PSDs computed on a fGtR series x(t) with α = 0.9, on traffic 

xP(t) obtained by policing x(t) with r/mx = 1.2 and b/(σxτ0) = 
18.3, and on another fGtR series xS(t) synthesized with same 

parameters mxS = mxP, σxS = σxP, αS = αP as of xP(t). PSD has 
been estimated by FFT-based periodogram over 8192 points, 

having divided the series in 1024 segments with Welch data 

windowing [22]. We note that the PSDs in Fig. 6 are nearly 

identical, except the slight α reduction already pointed out. 

In spite of its 1/f αP spectrum, as a matter of fact, the policed 
traffic xP(t) does not obey a plain fGtR model under a number 

of aspects. 

First, the policed traffic xP(t) is not Gaussian. The policer al-

ters noticeably the probability distribution of traffic samples 

xk. Fig. 7 compares the probability distributions P(xk = x) of 

samples of the input fGtR series {xk} with parameters 

(mx = 2.279 kbit/ms, σx = 773.9 bit/ms, α = 0.9) and of the po-

liced traffic series {xPk} for r/mx = 1.2, 1.3 and b/σx = 18.3. In 
the policed traffic distribution, note the concentrated probabil-

ity for xk = r, due to arrival of r or more bits of traffic in a time 

unit when the token counter is empty. 
In addition, we noticed also that the policer alters signifi-

cantly the third-order statistical correlation of the process x(t). 
The third-order covariance of a stationary process x(t) may be 

defined as the two-lags function (cf. eq. (3)) 

( ) ( )( )( )[ ]xxxx mxmxmxEC −+−+−= )()()(, 2121 τττττττ (6). 

We generated 1000 independent fGtR sequences {xk} with 

α = 0.9. We regulated them by a policer with r/mx = 1.2 and 

b/(σxτ0) = 18.3. Then, we estimated the covariances Cx(k1, k2)
and CxP(k1, k2) of the input and policed traffic, respectively, by 

averaging the 1000 covariances estimated on single sequences. 

The results are plotted in Figs. 8 and 9. We observe that the 

third-order covariance of the traffic series has been altered 
substantially by the policer, although the PSD has been af-

fected only slightly (Fig. 7). 
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Fig. 8: Third-order covariance Cx(k1, k2) of input fGtR traffic x(t) (α = 0.9). 
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Fig. 9: Third-order covariance CxP(k1, k2) of the policed traffic xP(t)

(α = 0.9, r/mx = 1.2, b/(σxτ0) = 18.3). 

VI. CONCLUSIONS 

In this paper, we investigated by simulation the queuing per-

formance of LRD traffic regulated by token-bucket policers. In 

particular, we compared the distributions of the delay in a 
downstream scheduler buffer of regulated and unregulated 

LRD flows, in order to determine whether they present differ-

ent probability of violating delay thresholds. 

First, more extensive simulations confirmed and refined re-

sults already presented in [13][14]:  

• TB policers hardly reduce traffic LRD (Fig. 2);  

• in normal operation (i.e., r/mx > 1 and b/(σxτ0) > 10, the cus-
tomer meets the TCA and few traffic is dropped), the policer 

does not alter much the 1/f α PSD of traffic (Fig. 6), i.e. its 

2nd-order statistics, and its LRD parameter αP ≅ α (Fig. 2). 
In spite of this, policers reduce significantly the queuing de-

lay in downstream schedulers. The delay of policed traffic 

xP(t) is much lower than that of input traffic x(t) and of syn-

thetic fGtR xS(t) with same parameters as of xP(t) (Figs. 3, 4 

and 5). Furthermore, there is no fGtR traffic, for any value of 

α, which yields similar delay distribution as policed traffic 
with same mean and variance (Fig. 4). 

Based on this evidence, we concluded that the policed traf-

fic xP(t) does not obey a plain fGtR model, even when the po-

licer operates in normal conditions and the PSD of xP(t) is 

~1/f αP, at least as far as evaluation of queuing performance in 
downstream schedulers is concerned. 

Actually, the policed traffic xP(t) is not Gaussian anymore 

(Fig. 7). Moreover, the policer alters significantly also the 

third-order two-lags covariance of the traffic (Figs. 8 and 9). 

Finally, we point out that the positive effect of the policer 

on traffic queuing performance is significant: although traffic 

LRD is reduced only slightly, the probability of exceeding de-

lay thresholds may be cut down even by some orders of mag-

nitude, thus reducing noticeably the negative effects of possi-

ble LRD increase in input traffic. 
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