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Abstract   Long-range dependence (LRD) is a widely verified 
property of traffic crossing the wireless LAN radio interface. 
LRD severely affects network performance yielding longer queu-
ing delays. In this paper, we study how LRD and non-LRD traffic 
flows influence each other in the IEEE 802.11e wireless access 
network and their queuing behaviour in downstream schedulers. 
We consider scenarios with one and two wireless hops. We inves-
tigate interaction of traffic flows with the service class separation 
enabled by the IEEE 802.11e EDCA function, comparing results 
with those of the basic scenario with a single service class shared 
by all traffic flows. We find that a partial isolation of service 
classes is enabled by the IEEE 802.11e access function. However, 
competing flows exhibit a queuing behavior, in downstream 
schedulers, which cannot be accounted for by standard LRD traf-
fic descriptors. 

Index Terms  Communication system traffic, long-range de-
pendence, quality of service, queuing analysis, traffic control 
(communication), wireless LAN. 

I. INTRODUCTION

Many recent studies [1]-[5] have demonstrated the wide-

spread  presence  of   Self-Similarity   (SS)  and   Long-Range 

Dependence (LRD) in LAN and WAN traffic. These proper-
ties affect severely network performance, yielding longer 

queuing delays [6]-[11]. In a SS random process, a dilated por-

tion of a realization, by the scaling Hurst parameter H, has 

same statistical characterization as the whole. On the other 

hand, LRD is a long-memory property, usually equated to an 

asymptotic power-law decrease of the power spectral density 

(PSD) or, equivalently, of the autocovariance function [10]. 

Also wireless LAN (WLAN) traffic exhibits SS and LRD 

[1][10][12]. LRD properties of IEEE 802.11b WLAN traffic 

have been studied empirically in [13]. The authors concluded 

that LRD is present in IEEE 802.11b WLAN traffic at all le-

vels of traffic load, but higher degree of LRD is present under 
higher traffic load. Liang [14] exploited the SS properties 

found in a real ad-hoc network for traffic forecasting. Yu and 

Petropolu [15] studied the propagation of SS of traffic through 

wireless, energy-conserving gateways. Tickoo and Sikdar [16] 

developed an analytical model of the interarrival time distribu-

tion in IEEE 802.11 networks, detecting a clustering effect of 

interarrival times around some values. They presented simula-

tions and argued that aggregated traffic at the output of the 

IEEE 802.11 nodes seems to follow a multifractal model. 

In [17], the authors describe the influence of medium access 

control (MAC) mechanisms and propagation impairments on 
the traffic characteristics, when LRD traffic traverses IEEE 

802.11 links. This issue is relevant, as the traffic shaping per-

formed by 802.11 access nodes may influence the perfor-

mance of backbone networks. The most significant phenome-
na registered in [17] are the smoothing effect of the MAC me-

chanisms on the traffic at highest frequencies, while at lowest 

frequencies the authors found a SS mitigation that seems to be 

caused by packet loss induced by propagation impairments. 

Recently, the possibility of managing differentiated QoS le-

vels in WLAN has been introduced by the IEEE 802.11e stan-

dard [18]. The (partial) isolation of service classes in IEEE 

802.11e access networks may allow to mitigate the strong mu-

tual influence between traffic flows competing for radio re-

sources and could prevent, at least partially, LRD traffic to af-

fect the QoS of other traffic flows with shorter autocorrelation. 
However, at least to our knowledge, there are no works in lite-

rature studying the behavior of LRD traffic in IEEE 802.11e 

networks, neither in single-hop nor in multi-hop scenarios. 

In this paper, we study the influence of MAC mechanisms 

on characteristics of LRD traffic traversing IEEE 802.11e 

links. We study several scenarios by simulation, by comparing 

the statistical properties of input traffic with those at the output 

of the wireless network segment. We analyze the statistical 

properties of traffic flows crossing the WLAN interface in 

single-hop and multi-hop scenarios, with and without the ser-

vice class separation allowed by the IEEE 802.11e access me-
chanism. In particular, we study the  LRD-parameter of traf-

fic, which describes the asymptotic behavior of the power 

spectral density of LRD traffic for f 0. Then, we study the 

queuing performance of traffic flows in downstream schedul-

ers, after mutual interaction at the radio interface. We find that 

the queuing behavior of flows after the crossing of the WLAN 

network cannot be described by means of standard LRD indi-

ces such as .

II. PRINCIPLES OF IEEE 802.11E EDCA 

The IEEE 802.11e Enhanced Distributed Channel Access 

(EDCA) has been standardized in order to support prioritized 

services in the IEEE 802.11 Distributed Coordination Function 

(DCF), which only provides best-effort services in its current 

form. In EDCA, there are four Access Categories (ACs) to im-

plement prioritized services. Each AC transmits packets with 

an independent channel access function, characterized by dif-

ferent values of both collision window and backoff timer.  

Before starting transmission, each AC executes an indepen-

dent backoff process to determine the transmission time of its 
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frame. The backoff process is regulated by four configurable 

parameters: CWmin, CWmax, AIFS and TXOP limit. Specifically, 

for the ith Access Category, with i ∈ {0, 1, 2, 3}, the initial 
backoff window size is CWmin,i, the maximum backoff window 

size is CWmax,i, and the arbitration inter-frame space is AIFSi.

For 0 i < j  3, CWmin,i CWmin,j, CWmax,i CWmax,j, and AIF-
Si AIFSj. Thus, the AC with higher index has higher priority, 

having higher probability to gain channel access. 

When a station needs to transmit a new ACi frame, it moni-

tors channel activity and, if the channel is idle for a time pe-

riod equal to its arbitration interframe space (AIFSi), the frame 

is transmitted. Otherwise, if the channel is sensed busy (either 
immediately or during the AIFSi period), the channel is moni-

tored until sensed idle for an AIFSi time. Then, the backoff 

process is started by initializing the backoff time counter to a 

random value uniformly distributed in range (0, CWi–1), 

where CWi is the collision window of ACi and depends on the 

number of failed transmissions.  

At the first transmission attempt, CWi is set equal to the 

minimum collision window parameter (CWmin,i). As long as 

the channel is sensed idle, the backoff time counter is decre-

mented once every time slot, where the slot time duration is a 

constant defined by the physical layer. When a transmission is 
detected on the channel, the backoff time counter is blocked 

and it is reactivated when the channel is sensed idle for an 

AIFSi, if the transmission is successfully received. As soon as 

the backoff time counter reaches zero, the frame is transmitted 

in the next slot time. A collision occurs when two or more 

transmissions start simultaneously.  

An acknowledgment (ACK) frame is used to notify the 

transmitting station that the frame has been successfully re-

ceived. The ACK is transmitted at the end of the frame after a 

period of time equal to the physical layer constant short inter-

frame space (SIFS). If the ACK is not received within a speci-

fied ACK timeout, the transmitted frame is assumed lost and a 
retransmission is scheduled by restarting the backoff process. 

After each unsuccessful transmission, CWi is doubled up to a 

maximum value given by CWmax,i. To reduce collisions caused 

by hidden terminals and improve channel efficiency for long 

data transmissions, the request to send/clear to send 

(RTS/CTS) mechanism is used. Thus, a four-way RTS/CTS/ 

DATA/ACK handshake is used for frame transmission. 

III. SELF-SIMILARITY AND LONG-RANGE DEPENDENCE

A random process X(t) (e.g., cumulative packet arrivals in 

time interval [0, t]), is said to be self-similar, with scaling pa-

rameter of self-similarity or Hurst parameter H>0, H∈ℜ, if 

)()( atXatX H
d

−=  (1) 

for any a>0, where =d denotes equality for all finite-

dimensional distributions [10]. In other terms, the statistical 

description of X(t) does not change by scaling its amplitude by 

a-H and its time by a. Most SS processes are not stationary. 

The class of SS processes is usually restricted to that of self-
similar processes with stationary increments (SSSI), which are 

“integral” of some stationary process. For example, consider 

the δ-increment process of X(t), defined as Yδ(t) = X(t) - X(t-δ )

(e.g., packet arrivals in the last δ time units). For a SSSI proc-
ess X(t), Yδ (t) is stationary and 0 < H < 1 [10]. 

Long-range dependence of a process is defined by an as-

ymptotic power-law decrease of its autocovariance and PSD 

[10]. Let Y(t) be a 2nd-order stationary random process. Y(t)
exhibits LRD if its autocovariance follows asymptotically  

10,for~)(
1

1 <<+∞→− ατττ α
cRY  (2) 

or, equivalently, its two-sided PSD follows asymptotically 

10,0for~)( 2 <<→− αα
ffcfSY  (3). 

In general, a random process with non-integer power-law 
PSD is also known as fractional (not necessarily Gaussian) 

noise. It can be proven [10] that H-SSSI processes X(t) with 

1/2 < H < 1 have LRD increments Y(t), with 

12 −= Hα  (4). 

IV. SCENARIOS FOR PERFORMANCE EVALUATION

We selected two scenarios for performance evaluation. In 

scenario 1 (Fig. 1), the wireless IEEE 802.11e network com-

prises one wireless cell including two traffic sources (S1, S0) 
and a router R1 providing the connection to the fixed network. 

The traffic flows from S1 and S0 are denoted x1(t) and x0(t), 
respectively. Traffic flows x1(t) and x0(t) compete according to 

the IEEE 802.11e EDCA mechanisms to reach the router R1.  

Flows x1(t) and x0(t) may either belong to the same service 

class (same-class scenario) or be assigned to two different ser-

vice classes (different-class scenario). In the same-class sce-

nario, both x1(t) and x0(t) are served in class 0. In the different-

class scenario, x1(t) is assigned to class 1 and x0(t) to class 0. 

Packets originally generated by S1 (S0) form the traffic 

process y1(t) (y0(t)) at the input of router R1. R1 is assumed to 
treat y1(t) and y0(t) with a rate-based scheduler assigning a 

dedicated and constant service capacity C1 and C0 to y1(t) and 

y0(t), respectively. In this way, y1(t) and y0(t) do not interfere in 

R1 and their queuing behaviour can be studied separately. 

From a practical standpoint, this assumption could model a 

scenario where y1(t) and y0(t) follow different paths from R1. 

In scenario 2 (Fig. 2), two wireless hops are provided by the 

wireless router N1. The assumptions made for scenario 1 ap-

ply also here. In this case, we denote as y1(t) and y0(t) the traf-

fic flows, originally generated by S1 and S0, at R1 input. 

In conclusion, we defined four scenarios: 
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Fig. 1: Scenario 1 - one-hop wireless network. 
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Fig. 2: Scenario 2 - two-hops wireless network. 

Table 1: IEEE 802.11 system parameters. 

Bit rate for data packets 
Scenario 1 hop: 9 Mbit/s 

Scenario 2 hops: 24 Mbit/s 

Bit rate for RTS/CTS/ACK 6 Mbit/s 

PLC data rate 6 Mbit/s 

Backoff Slot Time (ST) 9 s

SIFS 16 s

DIFS 34 s

PHY header 192 bits 

MAC header 224 bits 

IP header 160 bits 

DATA packet 
L payload bits + PHY header + MAC 

header+IP header 

RTS 160 bits + PHY header 

CTS, ACK 112 bits + PHY header 

Table 2: QoS parameters for traffic sources. 

Scenarios 1 e 2 

Traffic AIFS (µs) CWmin,(ST) CWmax, (ST)

Class 1 sources  34 3 7 

Class 0 sources 43 7 15 

• scenario 1 (one hop), same class; 

• scenario 1 (one hop), different classes; 

• scenario 2 (two hops), same class; 

• scenario 2 (two hops), different classes. 

For all scenarios, we will examine the characteristics of the 

y1(t) and y0(t) traffic processes and their queuing behaviour in 

the scheduler of the fixed network router R1. 
As far as the LRD traffic model is concerned, in this paper 

we focus on fractional Gaussian traffic (fGt), being this model 

commonly adopted in literature. Our procedure of traffic syn-

thesis, detailed in [19], generates LRD pseudorandom se-

quences {xk} of traffic fGtR(α, mx, σx
2), with PSD ∝1/f α for 

assigned values of α with 0 α < 1, normally-distributed 

samples, mean mx and variance σx
2, rectified to avoid negative 

samples. The sequence {xk} represents the incremental data 

count [bit/s] at each time unit (i.e., the input traffic rate). 

For estimating accurately the α parameter of LRD traffic se-
ries, we used the Modified Allan Variance (MAVAR) [19]. 

MAVAR is a well-known time-domain quantity, conceived in 

1981 for frequency stability characterization of precision os-

cillators [21] [24] by modifying the definition of the original 

Allan Variance. MAVAR was proven to feature superior spec-

tral sensitivity and accuracy in LRD parameter estimation, 

coupled with excellent robustness against data nonstationarity 

(e.g., drift and steps) [19]. 

V. SIMULATION RESULTS

We evaluated the system performance by means of a simu-

lator built using the TKN implementation of 802.11e EDCA 
for ns-2 [[25]. The parameter settings are outlined in Table 1. 

The only difference between scenarios 1 and 2 is the bit rate 

for data packets, equal to 9 Mbit/s in for one hop and 24 

Mbit/s for two hops. We selected these values of data rate in 

order to guarantee that in both scenarios the service capacity at 
each wireless hop is larger than the average aggregate gross 

data rate (i.e. including overheads) on the air interface. This 

way, we avoid long-term congestions of the wireless network, 

while we allow short-term congestions (manageable with 

standard buffering) due to variable input traffic.

The IEEE 802.11e EDCA QoS parameters for service 

classes 1 and 0 are outlined in Table 2. We separated the colli-

sion windows of the two service classes in order to minimize 

their mutual interference across the radio interface. 

Both x1(t) and x0(t) are fGtR series made of N = 218 samples. 

For both sequences, we set the time unit τ0 = 1 ms, the mean 
mx = 2279 bit per time unit (i.e., 2.279 Mbit/s) and the devia-

tion σx = 773.9 bit per time unit (i.e., 773.9 kbit/s), as in [26].  
At each time unit, a packet payload is generated and a packet 

ready for transmission is inserted in the transmission buffer of 
the source, by adding to the payload the protocol overheads 

specified in Table 1. The capacity assigned to classes 1 and 0 

in the fixed network router R1 are C1 = C0 = 2.848 Mbit/s, to 

have load of schedulers serving y1(t) and y0(t) equal to 80%. 

We run extensive simulations to characterize flows y1(t) and 

y0(t) at the interface between wireless and wired networks. 

Sources generate traffic for 218 time units, feeding transmis-

sion buffers served according to the IEEE 802.11e EDCA 

rules. When sources stop generating traffic, the transmission 

buffers flush the stored content and the simulation is stopped. 

In Figs. 3 through 10, we plot the parameters αOUT,1 and 

αOUT,0 estimated by MAVAR respectively on y1(t) and y0(t), as 

a function of the parameters αIN,1 and αIN,0 of the input traffic 
flows x1(t) and x0(t), in the four scenarios. The average slope 

of MAVAR curves was estimated excluding the first and last 

decade of τ values [19].  
Figs. 3 and 4 show that in the one-hop scenario, when the 

two traffic flows share the same service class, both αOUT,1 and 

αOUT,0 can take very different values from the respective val-

ues of αIN,1 and αIN,0. The difference can be substantial: for ex-

ample, with αIN,1 = 0 and αIN,0 = 0.8, we have αOUT,1 = 0.01 

and αOUT,0 = 0.6. The variation of the α of x0(t) is significant, 

while the variation of the α of x1(t) is small. With two wireless 
hops (Fig. 7 and 8) and the same parameters of input traffic, 

we have measured αOUT,1 = 0.39 and αOUT,0 = 0.38. In this case 

both αOUT,1 and αOUT,0 change significantly. 
By assigning the two traffic flows to different service 

classes, we obtain a significant isolation of flow LRDs. Figs. 5 

and 6 plot αOUT,1 and αOUT,0 as a function of αIN,1 and αIN,0 in 
the one-hop scenario, by carrying traffic flow x1(t) in service 

category 1 and x0(t) in service category 0. Each traffic flow 

keeps its α parameter: that is, αOUT,1 ~ αIN,1 and αOUT,0 ~ αIN,0.

However, the same does not hold for the two-hops scenario 
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(Figs. 9 and 10), where the higher-priority traffic flow keeps 

its α parameter (αOUT,1 ~ αIN,1) while the lower-priority flow 

experiences a significant distortion of the αOUT,0 parameter, 

which is heavily influenced by αIN,1 (i.e., we observe cross-

service class interference). In particular (Fig. 10), αOUT,0 grows 

as αIN,1 increases (with αIN,0 = 0 and αIN,1 = 0.8, we have 

αOUT,0 = 0.52). Even if the input traffic process x0(t) is white, 
y0(t)  acquires a LRD feature if x1(t) has a strong correlation. 
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Fig. 3: Scenario 1, same class, αOUT,1.

0
0.2

0.4
0.6

0.8

0
0.2

0.4
0.6

0.8
-0.4

-0.2

0

0.2

0.4

0.6

0.8

αIN,1
αIN,0

α O
U

T,
0

Fig. 4: Scenario 1, same class, αOUT,0.
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Fig. 5: Scenario 1, different class, αOUT,1.
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Fig. 6: Scenario 1, different class, αOUT,0.

Then, we studied the delay performance of traffic flows 

y0(t) and y1(t) in the schedulers of router R1, with αIN,0 = 0.8, 

αIN,1 = 0 and αIN,0 = 0, αIN,1 = 0.8, in order to investigate the 
effects of the interaction of a white with a strongly correlated 

flow, when the white flow has both higher and lower priority 

than the correlated flow in the wireless segment of the end-to-

end path. In order to correlate easily the queuing behavior of 

y1(t) and y0(t) with the respective values of α, we reported in 

Table 3 the values of αOUT,1 and αOUT,0 in the selected cases. 
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Fig. 7: Scenario 2, same class, αOUT,1.
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Fig. 8: Scenario 2, same class, αOUT,0.
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Fig. 9: Scenario 2, different class, αOUT,1.
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Fig. 10: Scenario 2, different class, αOUT,0.

In Figs. 11 and 12, we plotted the complementary distribu-

tion function of the delay experienced by flows y1(t) and y0(t)

in the fixed network router R1 for αIN,0 = 0.8, αIN,1 = 0 and 
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αIN,0 = 0, αIN,1 = 0.8, respectively. For comparison, in these 
graphs we also plotted the distribution of the delay that would 

be experimented by flows x1(t) and x0(t) if they were fed di-

rectly into the schedulers of router R1. In this way, we are able 

to compare the delay tails of a traffic flow crossing one or two 

IEEE 802.11e wireless hops with the delay tail that would be 

experienced by the fresh input traffic in the same scheduler. 

Table 3: values of  αOUT,1 and αOUT,0 in the selected scenarios. 

αIN,0 = 0.8, αIN,1 = 0 (Fig. 11) 

 One hop Two hops

Same class 
αOUT,1 = 0.01 αOUT,1 = 0.39 

αOUT,0 = 0.6 αOUT,0 = 0.38 

Different class 
αOUT,1 = -0.03 αOUT,1 = -0.06 

αOUT,0 = 0.8 αOUT,0 = 0.64 

αIN,0 = 0, αIN,1 = 0.8 (Fig. 12) 
 One hop Two hops

Same class 
αOUT,1 = 0.6 αOUT,1 = 0.39 

αOUT,0 = -0.01 αOUT,0 = 0.39 

Different class 
αOUT,1 = 0.77 αOUT,1 = 0.76 

αOUT,0 = -0.06 αOUT,0 = 0.52 

Since both x1(t) and x0(t) are fractional Gaussian traffic, 

their delay tail in the schedulers of router R1 are Weibull dis-

tributed, i.e. the queuing delay D exceeds a given threshold d

with asymptotic probability P{D > d} ~ exp( -β d1-α ), where β
is a positive function of the α parameter and of other network 

parameters. Note that with α = 0 (white traffic) the Weibull 
delay tail is exponential.The Weibull queue length distribution 

departs significantly from the exponential distribution result-

ing with white input traffic. In particular, the closer α is to 1, 
the slower the queue distribution decreases, making higher the 

queuing delay. Therefore, for fresh fGt traffic, the network de-

lay performance depends considerably on actual values of the 

α parameter, among others. 

Given the primary role of α in determining the queuing be-

haviour of LRD traffic, we would expect that in the schedulers 
of R1 the delay tail of y1(t) and y0(t) are strictly related to the 

values of of αOUT,1 and αOUT,0 (Table 3). However, Figs. 11 and 
12 contradict this conjecture. In these graphs: 1) solid curves 

refer to x0(t) and y0(t) and dotted curves refer to x1(t) and y1(t); 
2) thin lines refer to the one-hop scenario, while thick lines to 

two-hops; 3) the square marker indicates the same class scena-

rio, while the rhombus indicates different classes.  

With reference to Fig. 11 (αIN,0 = 0.8, αIN,1 = 0), let us con-
sider first the one-hop scenario with same class. Flow y1(t) has 

delay distribution with longer tail than that of x1(t): i.e., by 

competing with a strongly correlated traffic in the wireless 

segment, y1(t) has acquired a queuing behavior worse than that 

of x1(t). The contrary holds for y0(t), whose delay tail is signif-

icantly shorter than that of x0(t). It is interesting to note that 
the queuing behavior of y1(t) does not seem to be justified by 

the value of αOUT,1 = 0.01 (Table 3). Such a value of αOUT,1

would suggest a slight deviation of the delay tail of y1(t) from 

that of x1(t). However, the deviation is large. We infer that y1(t)
cannot be modeled simply as fGt.  

In the one-hop scenario with different classes, a similar but 

milder phenomenon occurs: i.e., we still observe an increase of 

the delay tail of y1(t) and a decrease of the delay tail of y0(t), 
but the deviation of the delay tail of a traffic flow crossing the 

radio interface from that of the respective fresh input traffic 

flow is smaller. In this scenario, the isolation of service classes 

provided by the IEEE 802.11e EDCA seems to be effective. 

1,00E-05

1,00E-04

1,00E-03

1,00E-02

1,00E-01

1,00E+00

0 5 10 15 20 25 30

d (ms)

P
(D

>
d

)

x1(t) x0(t) y1(t), 1 hop, same class

y0(t), 1 hop, same class y1(t), 1 hop, different class y0(t), 1 hop, different class

y1(t), 2 hops, same class y0(t), 2 hops, same class y1(t), 2 hops, different class

y0(t), 2 hops, different class

Fig. 11: delay behavior in the fixed network router R1, αIN,0=0.8, αIN,1=0. 
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Fig. 12: delay behavior in the fixed network router R1, αIN,0=0, αIN,1=0.8. 

With two wireless hops (scenario 2) and same class, the 

same basic considerations of the one-hop scenario and same 

class apply (the decrease of the delay tail of y0(t) is sharper). It 

is interesting to compare the behavior of y1(t) in this scenario 

and in the scenario with one hop and same class. In the two 

scenarios, the delay tails of y1(t) are very similar. However, the 

measured values of αOUT,1 (Table 3) would suggest the con-

trary, as with one hop αOUT,1 = 0.01 and with two hops 

αOUT,1 = 0.39. Also in this case, we infer that the statistical 
characterization of traffic changes deeply while crossing the 

IEEE 802.11e radio access network, in such a way that α is no 
longer sufficient to describe the queuing behavior of traffic. In 
the scenario with two wireless hops and different classes the 

isolation of flows provided by the IEEE 802.11 e EDCA func-

tion is rather effective, as the deviation of the delay tails of 

y1(t) and y0(t) from those of x1(t) and x0(t), respectively, are 

relatively small. 

Fig. 12 refers to the same scenarios of Fig. 11, where the 
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priorities of x1(t) and x0(t) are exchanged. In this scenario, the 

white traffic has lower service priority and it is greatly af-

fected by the competition with LRD traffic. It is particularly 

interesting the scenario with two wireless hops, where the flow 

y0(t) acquires a heavy tailed queuing behavior in the router R1 

both in the same-class and different-class scenario. Remarka-

bly, with different service classes, the originally white traffic 

acquires the fattest delay tail in R1. Moreover, with two hops 

and same class Table 3 reports that αOUT,1= αOUT,0 ~ 0.39, 
therefore, we would expect a very similar delay tail for y1(t)
and y0(t). Also in this case, our intuition is partially contra-

dicted as even if both delay tails are fat, they are significantly 
different. 

VI. CONCLUSIONS

We studied how traffic flows with different LRD parameters 

influence each other in IEEE 802.11e WLAN, in both one-hop 

and two-hop configurations. Our simulations account for the 

service class separation allowed by the IEEE 802.11e EDCA 

function and match results with those obtained in the basic 

scenario without separation of service classes.  
In the scenarios selected, traffic flows, after having crossed 

the single-hop or two-hop radio interface, enter a fixed net-

work node where they are served by a rate-based scheduler. In 

our work, we studied the LRD and queuing behavior of traffic 

at output of the wireless network. 

 As far as the LRD parameters of traffic are concerned, the 

analysis has shown that a strong mutual interference among 

flows occurs if a single service class is used, especially in the 

multi-hop scenario: i.e., the flow with smaller α parameter ex-

periences an increase of α and the opposite holds for the flow 

with the larger α. Differentiating the service priorities by the 
mechanisms enabled by the IEEE 802.11e EDCA function im-

proves significantly the isolation of service classes. However, 

in the multi-hop scenario this separation is partial. 

In the second part of our analysis we studied the queuing 

behavior of the traffic output by the wireless network in the 
schedulers of a fixed network router. Since the queuing delay 

tail of LRD traffic is generally dominated by the α parameter, 
which determines how fat is the tail, we have tried to correlate 

delay tails with the corresponding α parameters of traffic 
measured at the output of the wireless network.  

The results of the analysis are surprising, as the queuing be-

havior of traffic flows, after the crossing of the wireless seg-

ment, does not seem to depend on measured values of their α
parameters. This observation hints that LRD traffic transported 

through the WLAN interface undergoes a deep structural 

change of its statistical model. A simple fGt model is not ade-

quate to describe its behavior, at least as far as its queuing be-

havior is concerned.  
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