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Abstract  Long-range dependence (LRD) is a largely verified 
property of Internet traffic, which severely affects network queu-
ing. An approach for guaranteeing performance requirements is 
controlling the statistical profile of input traffic by policing or 
shaping regulators. In this paper, it is investigated by simulation 
how the 1/fα spectrum of LRD traffic is altered when this is regu-
lated by either policers or shapers. Traffic spectral analysis is car-
ried out mainly by the Modified Allan Variance, a time-domain 
quantity with demonstrated superior accuracy in fractional-noise 
parameter estimation. The queuing behaviour of LRD regulated 
traffic in FIFO schedulers is also investigated. Conditions under 
which service level agreements based on delay bounds can be vio-
lated, by varying α in input LRD traffic, are examined. 

Index Terms  Communication system traffic, fractional noise, 
Internet, long-range dependence, queuing analysis, traffic control 
(communication). 

I. INTRODUCTION

nternet traffic exhibits self-similarity and long-range de-
pendence (LRD) on various time scales [1][3]. These 

properties emphasize long-range time-correlation between 
packet arrivals. Fractional noise and fractional Brownian mo-
tion models are often used to describe such behaviour of Inter-
net traffic series, e.g. cumulative or incremental bit count 
transmitted over time. 

In a self-similar random process, a dilated portion of a reali-
zation, by the scaling Hurst parameter H, has the same statisti-
cal characterization than the whole. On the other hand, LRD is 
usually equated to an asymptotic power-law decrease of the 
power spectral density (PSD) ~f -α (for f→0) or, equivalently, 
of the autocovariance function. Under some common hypothe-
ses [2], the integral of a LRD process is self-similar with H re-
lated to α (e.g., fractional Brownian motion, integral of frac-
tional Gaussian noise). 

It has been pointed out [4]—[7] that traffic LRD contributes 
to build up long queues in network buffers. In the case of frac-
tional Gaussian traffic, for example, it has been found [4][5] 
that the queue tail is Weibull distributed, i.e. the buffer occu-
pancy X exceeds a given threshold x with asymptotic probabil-
ity P{X > x} ~ exp( -β x1-α ), where β is a positive function of 
α and of other network parameters.  

The Weibull queue length distribution departs significantly 
from the exponential distribution resulting with Poisson input 
traffic. In particular, the closer α is to 1, the slower the queue 

distribution decreases, making higher the queuing delay. 
Therefore, the network delay performance depends considera-
bly on actual values of the H and α parameters, among others. 

Guaranteeing performance requirements, e.g. delay bounds, 
calls for a strict control of the statistical profile of offered traf-
fic. A common approach is to control it by policing or shaping
regulators, after the leaky bucket scheme proposed in [8]. 
Both types of regulators control the average rate and bursti-
ness of the through traffic. Traffic exceeding one or both these 
parameters is either dropped (policer) or delayed (shaper). 

Enforcing average rate and burstiness of input flows may al-
low attaining given network performance targets [9]. Though, 
several authors proved that it is difficult to cope with LRD us-
ing leaky-bucket regulators [10]—[16]. Some, based on analy-
sis, claim that LRD cannot be cancelled [11][13][14]. Others, 
based on simulation, assert that LRD can be reduced by poli-
cers and shapers, although only by dropping or delaying a very 
large fraction of packets [10][12]. Such contradictions stem 
mainly from the difficulty of studying analytically the traffic 
output by a regulator, which is both non linear and with mem-
ory, fed with LRD input traffic. Simulation as well is made 
cumbersome by the asymptotical definition of LRD for f→0. 

In our previous paper [17], we presented a thorough simula-
tion study, which confirmed that leaky-bucket policers can 
hardly weaken traffic LRD and that, consequently, it is diffi-
cult to match service delay bounds if α increases. 

In this paper, we further investigate this matter, now extend-
ing the scope to shapers. By simulation, it is studied how the 
1/fα spectrum of LRD traffic is altered when this is regulated 
by either policers or shapers, comparing their behaviour. Traf-
fic spectral analysis is carried out mainly by the Modified 
Allan Variance, a time-domain quantity with demonstrated su-
perior accuracy in fractional-noise parameter estimation. The 
queuing behaviour of LRD regulated traffic in downstream 
FIFO schedulers is also investigated. Conditions are exam-
ined, under which a Service Level Agreement (SLA) based on 
delay bounds can be violated by varying α in input LRD traf-
fic, although regulated by either a policer or shaper. 

II. SELF-SIMILARITY AND LONG-RANGE DEPENDENCE

A random process X(t) (e.g., cumulative packet arrivals in 
time interval [0, t]), is said to be self-similar, with scaling pa-
rameter of self-similarity or Hurst parameter H>0, H∈ℜ, if 

)()( atXatX H
d
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for any a>0, where =d denotes equality for all finite-
dimensional distributions [1][2]. In other terms, the statistical 
description of X(t) does not change by scaling its amplitude by 
a-H and its time by a.

In practice, the class of self-similar (H-SS) processes is usu-
ally restricted to that of self-similar processes with stationary 
increments (H-SSSI processes), which are “integral” of some 
stationary process. For example, consider the δ-increment 
process of X(t), defined as Yδ(t) = X(t)-X(t-δ) (e.g., packet arri-
vals in the last δ time units). For a H-SSSI process X(t), Yδ(t)
is stationary and 0 < H < 1 [2]. 

Long-range dependence of a process is defined by an as-
ymptotic power-law decrease of its autocovariance and PSD 
[1][2]. Let Y(t) be a 2nd-order stationary random process. Y(t)
exhibits LRD if its autocovariance follows asymptotically  

10,for~)( 1
1 <<+∞→− αττδ αcRY  (2) 

or, equivalently, its two-sided PSD follows asymptotically 

10,0for~)( 2 <<→− αα ffcfSY  (3). 

In general, a random process with non-integer power-law 
PSD is also known as fractional (not necessarily Gaussian) 
noise. It can be proven [2] that H-SSSI processes X(t) with 
1/2 < H < 1 have LRD increments Y(t), with 

12 −= Hα  (4). 

III. REGULATING INPUT TRAFFIC FOR GUARANTEEING QOS
The quality of Internet end-to-end services (QoS) can be 

guaranteed in terms of bandwidth, jitter limits and delay 
bounds [18]. QoS guarantees may apply either to single [19] 
(IntServ model) or aggregate flows (DiffServ model). 

A. Service Level and Traffic Conditioning Agreements 
In either case, the customer contracts with the Internet Ser-

vice Provider (ISP) for the transport of flows under a SLA, 
which specifies quantities defining the QoS that the ISP must 
meet. In this paper, we focus on statistical delay bounds [20], 
commonly defined as maximum fraction of packets pmax al-
lowed to exceed a given end-to-end delay threshold dmax.

The contract between customer and ISP includes a Traffic 
Conditioning Agreement (TCA), which describes the statistical 
profile of traffic allowed to enter the network, in order to 
guarantee the SLA. The ISP allocates resources based on TCA 
parameters, which usually include [21]: average rate r [byte/s], 
burst size b [byte], peak rate [byte/s], minimum policed unit 
[byte] and maximum packet length [byte]. The ISP may act 
conservatively, allocating the declared peak data rate, or more 
aggressively, taking advantage of statistical multiplexing 
[20][22]–[26]. In any case, the ISP must meet the SLA.  

To enforce the TCA, a common solution is using traffic 
regulators based on the leaky bucket scheme. If the source 
traffic complies with the TCA (in-profile traffic), the regulator 
transfers it unaltered. Otherwise, if traffic is violating the TCA 
(out-of-profile), the regulator drops it (policing) or delays it 
(shaping) in an internal buffer, until it is possible to inject it 
into the network without violating the TCA. 

r

b

x(t) x(t)

b

r

a) policer b) shaper

∞

Fig. 1: Policing (a) and shaping (b) traffic regulators. 

B. Traffic Regulators: Policers and Shapers 
We adopted a fluid traffic model [5], where traffic units are 

bits. As shown in Fig. 1a, the leaky bucket policing regulator 
has a counter of credits (tokens) with maximum value b [bit] 
(token bucket size). The credit counter is increased every 1/r s, 
where r is the token rate. One bit of offered traffic is allowed 
to pass through the regulator if the counter is positive (then, 
the counter is decremented). Otherwise, if the counter is equal 
to zero, the bit is dropped.  

Fig. 1b shows a shaping regulator. The credit counter works 
as for the policer. An incoming bit passes through the regulator 
instantaneously if, at its arrival, the counter is positive and the 
infinite input buffer is empty. Otherwise, if the buffer is not 
empty and/or the counter is null, the incoming bit is stored. 
When the input buffer is not empty, one bit is fetched from the 
buffer as soon as a token is generated. 

The r and b parameters of both types of regulators have an 
intuitive physical meaning. The r parameter controls the aver-
age rate of the through traffic, as the regulator cannot output 
more than r bit/s on the average. The b parameter controls the 
length of output traffic bursts. If the token counter is full (i.e., 
it holds b tokens), the regulator can output a burst of b bits at 
maximum rate. Then, it must stop to wait further tokens.  

C.  Guaranteeing Quality of Service with LRD Traffic 
These regulators can enforce the traffic average rate and 

burst length, but it is not clear if they are capable of adjusting 
the α parameter too. This problem is important, as the high 
sensitivity of delay tails to α makes difficult to match delay 
SLA, if the α parameter of fractional traffic is not controlled.  

This issue has been addressed in [17] for a policing regula-
tor. It has been shown that it is difficult to change the α pa-
rameter of traffic without dropping a very large fraction of 
traffic. It has been also shown that an increase of α in input 
traffic, even without altering the average rate, can cause a vio-
lation of delay SLA in downstream schedulers. 

IV. ESTIMATING PARAMETERS H AND α OF LRD DATA USING 
THE MODIFIED ALLAN VARIANCE

For estimating H and α parameters of LRD traffic series, we 
used the Modified Allan Variance (MAVAR), recently pro-
posed also as traffic analysis tool [27][28]. 

A. The Modified Allan Variance 
MAVAR is a well-known time-domain quantity, originally 
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conceived in 1981 for frequency stability characterization of 
precision oscillators [29][33] by modifying the definition of 
the Allan Variance (AVAR). MAVAR has been demonstrated to 
feature superior spectral sensitivity and accuracy in fractional-
noise parameter estimation, coupled with excellent robustness 
against nonstationarities in data analyzed (e.g., drift and steps) 
[28]. This section briefly recalls few MAVAR properties most 
relevant to our aim.  

Given a finite set of N samples {xk} of a signal x(t), evenly 
spaced by sampling period τ0, MAVAR can be estimated using 
the ITU-T standard estimator [29] 
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where the observation interval is τ = nτ0 and n = 1, 2,..., N/3 .
The MAVAR is a kind of variance of the second difference 

of input data, including an internal average over n adjacent 
samples. A recursive algorithm for fast computation of this es-
timator exists [29], which cuts down the number of operations 
needed for all values of n to ~N2 instead of ~N3.

It should be noted that the point estimate (5) is a random 
variable itself. Along a plot of MAVAR(τ), confidence inter-
vals are negligible for short τ and widen moving to longer τ,
where fewer terms are averaged [34][36]. In our results, 
therefore, we excluded MAVAR values computed for largest n.

B. Power-Law Random Processes 
It is convenient to extend the LRD power-law model of 

spectral density (3). As customary in characterization of phase 
and frequency noise of precision oscillators [37], we deal with 
random processes x(t) whose one-sided PSD is modelled as 
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where P is the number of noise types considered, αi and hαi
are model parameters (αi, hαi

∈ ℜ) and fh is the upper cut-off 
frequency. Such random processes are commonly referred to 
as power-law or fractional noise (not necessarily Gaussian). 

Power-law noise with 0 ≤ αi ≤ 4 was revealed in practical 
measurements of various physical phenomena, such as phase 
noise of precision oscillators [29][37] and Internet traffic 
[1][2], whereas P should be not greater than few units for the 
model being useful. If the process x(t) is LRD with PSD (3), 
then this model still applies, for P=1 and 0 < αi < 1 (at least 
asymptotically). Although values αi ≥ 1 yield model patholo-
gies, such as infinite variance and even non-stationarity, this 
model is common, considering also that real-world measure-
ments have finite duration and bandwidth. 

Under this general hypothesis of power-law PSD, by letting 
P=1, α=αi and in the whole range of MAVAR convergence 
0 ≤ α < 5, MAVAR is found to follow a simple power law 
(ideally asymptotically for n→∞, nτ0=τ, but in practice for 
n>4), i.e. 

αµττσ µ
µ +−= 3,~)(Mod 2 Ay  (7). 

If P>1, it is immediate to generalize (7) to summation of 
powers i

i
i

A µ
µ τ . This is a fundamental result. If x(t) obeys 

(6), a log-log plot of Mod σy
2(τ) looks ideally as a piecewise 

function made of P straight segments, assuming sufficient 
separation between components, whose slopes µi can be esti-
mated to yield exponents αi = 3+µi of the fractional noise 
terms that are dominant in different ranges of τ. If we consider 
a LRD process with PSD (3), characterized by Hurst parame-
ter 1/2 < H < 1, from (4) and (7) we obtain 

3
22

+=
+=

µα
µH

 (8). 

In papers [27][28], these estimates of H and α were demon-
strated to be very accurate and robust against nonstationarities 
in the processed data (drifts, periodic trends and steps).  

Finally, let us notice that this procedure is analogous to that 
of the wavelet second-order log-scale diagram technique 
[1][2][38], which analyzes data over a range of scales, by ob-
serving the power-law behaviour (i.e., estimating the slopes) 
of the wavelet detail variances across octaves. 

V. MODEL AND SYNTHESIS OF INPUT TRAFFIC

In this paper, we focus on fractional Gaussian traffic, be-
cause for this type of LRD traffic the queue tail distribution 
has been derived analytically (Weibull) [4][5]. Our procedure, 
detailed in [17], generates pseudorandom sequences fGtR(α,
mx, σx

2), with PSD ∝1/f α, normally-distributed samples, mean 
mx and variance σx

2, rectified to avoid negative samples. 

VI. SIMULATION RESULTS: SHAPER VS. POLICER BEHAVIOUR

We generated fGtR sequences {xk} made of N = 223 samples, 
representing the incremental data count [bit/s] input at each 
time unit into the regulator under study. We set the time unit 
τ0 = 1 ms, the mean mx = 2279 bit per time unit (i.e., 
2.279 Mbit/s) and the deviation σx = 773.9 bit per time unit 
(i.e., 773.9 kbit/s), as in [5]. We varied α in range 0 ≤ α < 1.  

The traffic x(t) was fed into the regulator. Then, we charac-
terized the output traffic, observing how it is affected for vari-
ous values of the token rate r and size b. Traffic was analyzed 
both in the time and frequency domains, respectively by 
means of MAVAR and classic FFT-based power spectrum es-
timation (periodogram over 1024 points, having divided the 
sequence in 8192 segments with Welch data windowing [39]). 

A. Impact of Policers and Shapers on Traffic 1/fα Spectrum 
Figs. 2 and 3 show the PSD and MAVAR, respectively, 

computed on the traffic sequence at the output of a policer and 
a shaper, with threshold b = 14202 bit and for various values 
of the ratio r/mx > 1 of the token rate to the input traffic mean 
rate, fed with fGtR input traffic with α = αIN= 0.50. 

For both the policer and the shaper, curves for r/mx = ∞
were computed directly on the input sequence x(t), which in 
this case transits through the policer unaffected, as obvious. 
Values r/mx ≥ 1.1 may be reasonable default settings of the  
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Fig. 2: PSD of traffic output by a) policer and b) shaper (b=14202 bit, r) with 
fGtR input traffic (αIN=0.50, mx=2.279 kbit/ms, σx=773.9 bit/ms,τ0=1 ms). 
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Fig. 3: MAVAR of traffic output by a) policer and b) shaper (b=14202 bit, r)
with fGtR input traffic (αIN=0.50, mx=2.279 kbit/ms, σx=773.9 bit/ms,τ0=1 ms). 

Table 1: Values of αOUT estimated from MAVAR results in Fig. 3 (αIN=0.50). 

r/mx Policer αOUT Shaper αOUT 
∞ 0.491 0.491 

1.1 0.455 0.527 
1.05 0.423 0.580 
1.01 0.384 0.634 
1.0 0.372 0.685 

Note: αOUT estimated by linear regression in interval 0.001 s < τ < 300 s. 
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Fig. 4: Loci of the (r/mx, b/σx) pairs for which the same αOUT was estimated on 
the traffic output by a regulator fed with fGtR (αIN=0.90). 

regulator, when the token rate is much greater than the source 
mean rate and the regulator drops or delays traffic only sel-
dom. In this case, the customer is complying with the TCA and 
the regulator does not drop or delay traffic significantly: both 
PSD and MAVAR of the output traffic nearly coincide with 
those of the input traffic. Decreasing further the ratio r/mx, we 
notice that the spectrum of the through traffic begins to be af-
fected significantly. Nevertheless, the policer and the shaper 
exhibit different behaviours. 

When r/mx > 1, both regulators work in a quasi-linear mode: 
the output PSD and MAVAR do not depart much from a sim-
ple power law (linear trend in the log-log plot), although with 
changed slope. In other words, policers and shapers somehow 
alter the parameter α of the through traffic, but they do not 
distort much the power-law spectral nature of traffic. 

 When r/mx < 1, the customer exceeds the TCA limits and 
regulators severely cut the traffic rate. The policer drops a sig-
nificant or even most part of the traffic. The shaper, on the 
contrary, delays traffic in the infinite input buffer, loaded with 
coefficient ρ = mx/r > 1. Therefore, the queue does not stabi-
lize on a stationary probability distribution, but it grows in-
definitely: after a brief initial transient, the shaper simply 
squeezes a uniform flow at constant rate r. For this reason, we 
restricted spectral analysis of output traffic by PSD and 
MAVAR to the case r/mx > 1. 

We estimated average slopes of MAVAR curves in Fig. 3 by 
linear regression in interval 0.001 s < τ < 300 s, getting the es-
timates α = αOUT reported in Table 1 for both the policer and 
the shaper. By examining these α values, it is interesting to 
note that the policer and the shaper exhibit opposite behav-
iours: for r/mx ≥ 1, the policer slightly diminishes the value of 
α of through traffic, while the shaper increases it. Therefore, 
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policers seem to slightly decorrelate traffic, while shapers do 
the opposite enhancing LRD of through traffic.  

Further results shown in Fig. 4 sustain this claim. In these 
simulations, regulators were fed with fGtR traffic with α
= αIN = 0.90. Then, we varied both parameters r and b of the 
regulator in a wide interval. The α parameter of the output 
traffic was estimated by linear regression on MAVAR curves 
in the same interval 0.001 s < τ < 300 s as in Table 1 (we ex-
cluded safely the last decade because of lower confidence). 

Fig. 4 plots the loci of the (r, b) pairs, for which the same 
value αOUT was estimated on the output traffic of policers and 
shapers, having normalized r to the input traffic average mx

and b to the input traffic deviation σx. In this graph, curves are 
labelled by the value αOUT. Let us notice that αOUT < αIN for 
the policer and αOUT > αIN for the shaper. Moreover, we ob-
serve that the function αOUT(r, b) is not trivial. For large values 
of r/mx and b/σx, we have αOUT ≅ αIN. For the policer, αOUT de-
creases as r/mx and b/σx get smaller, while the opposite hap-
pens for the shaper. Finally, αOUT(r, b) is not monotonic. 

B. Impact on Queuing Delay of Regulated Traffic 
As recalled in Sec. I and III.C, the α parameter of traffic has 

great importance for the provisioning of network resources. 
Therefore, we simulated scenarios where traffic regulated by a 
policer or a shaper is fed into a FIFO scheduler.  

In these simulations, the traffic x(t) at the input of the regu-
lator has the same average rate mx and deviation σx set in pre-
vious experiments. The rate and threshold of both the policer 
and the shaper are set to r = 3 Mbit/s (i.e., r/mx = 1.31) and 
b = 14202 bit (i.e., b/σx = 18.3 ms), respectively. With these 
settings, both the policer and the shaper affect α negligibly (cf. 
Figs. 3, 4 and Table 1). The FIFO scheduler has an output line 
with capacity C = 2.532 Mbit/s (i.e., mx/C = 0.90).  

Fig. 5 plots the probability P(d>D) that traffic experiences a 
delay d greater than D, measured from the input of the regula-
tor to the output of the FIFO scheduler, for six different values 
of the α parameter of the input traffic (viz. α = 0.0, 0.2, 0.4, 
0.5, 0.6 and 0.8), for both a policer and a shaper. Confidence 
intervals are negligible. 

Let us assume that the network operator and the customer 
stipulated a TCA with r = 3 Mbit/s and b = 14202 bit. More-
over, the SLA specifies that the probability that the delay d in 
the scheduler exceeds D=30 ms is P{d>30 ms} ≤ 0.002. Fi-
nally, let us assume that the customer supplies fGtR traffic x(t)
with mx and σx as in previous simulations, with α = 0.4. By in-
spection of Fig. 5, we conclude that the SLA is fulfilled, be-
cause P(d>30 ms) is just smaller than 0.002.  

Nevertheless, if the customer supplies x(t) with same mx and 
σx but with α  0.5, we observe again from Fig. 5 that the SLA 
is now violated, as the probability of exceeding delay 30 ms 
P{d>30 ms} results much greater than 0.002 (actually 10 or 
100 times greater). In this case, both the policer and the shaper 
are unable to alter the α parameter of traffic and the result is a 
disruption of the required quality of service. 
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Fig. 5: Probability of exceeding delay D in a FIFO queue following a 
regulator (mx=2279 bit/ms, σx=773.9 bit/ms,τ0=1 ms, r/mx=1.31, b/σx=18 ms). 

VII. CONCLUSIONS

In this paper, we investigated by simulation how policing 
and shaping regulators alter the 1/fα power-law spectrum of 
LRD traffic. Spectral analysis of traffic was carried out mainly 
in the time domain by means of the Modified Allan Variance, 
because of its demonstrated superior accuracy in fractional-
noise parameter estimation. 

We found that policers and shapers may alter the LRD of 
regulated traffic, depending in particular on ratio r/mx, but they 
do exhibit opposite behaviours. Policers slightly diminish the 
value of α of through traffic (i.e., they decorrelate it), while 
shapers increase α (i.e., they enhance LRD of through traffic). 
These behaviours have been observed when the regulator rate 
is greater than the input traffic mean rate (r/mx>1), that is 
when the regulator operates in the “normal” condition where 
the customer fulfils the TCA, by feeding the network with an 
average traffic smaller than or equal to the contracted rate.  

However, in this condition both the shaper and the policer 
affect only slightly (even if in opposite ways) the α exponent 
of traffic. This has important consequences on the possibility 
of controlling and guaranteeing the end-to-end quality of ser-
vice stipulated in SLA. In fact, we have shown that if the α
exponent of input traffic is increased, while maintaining the 
same average rate of input traffic, both the shaping and the po-
licing regulators are not effective to control such increase of α.
Therefore, this traffic is offered almost unaffected to down-
stream network schedulers, yielding possible disruptions of 
end-to-end delay SLA.  

This result may seem negative, but it provides interesting 
hints for future research. In particular, it would be useful to 
conceive regulators able to control more effectively the α ex-
ponent of traffic. In this way, it could be possible to guarantee 
delay bounds even in presence of LRD traffic. Our research 
activity is now focused on a more complete characterization of 
the output of this and other types of traffic regulators, aiming 
at identifying schemes capable of acting more effectively on 
the α parameter of fractional traffic. 
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