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Abstract  Internet traffic exhibits self-similarity and long-
range dependence (LRD) on various time scales. In this work, we 
analyze IP traffic traces measured on a MAN link of the tele-
communications operator FASTWEB. We emphasize results ob-
tained using the Modified Allan Variance (MAVAR), a well-
known time-domain tool originally conceived to discriminate 
noise types with power-law spectrum (i.e., fractional noise) in 
frequency stability measurement, which has been introduced in 
network traffic analysis only recently. MAVAR has been demon-
strated to feature superior spectral sensitivity and accuracy in 
fractional-noise parameter estimation, coupled with outstanding 
robustness against nonstationarity in data analyzed. Logscale 
diagrams are also evaluated, to confirm MAVAR experimental 
findings. All traffic traces analyzed exhibit prominent evidence of 
fractional noise. Model parameters are estimated. Results ob-
tained are valuable to establish IP traffic models, e.g. necessary 
for realistic input traffic synthesis in network simulation. 

Index Terms  Fractional noise, Internet, metropolitan area 
network, long-range dependence, self-similarity, traffic meas-
urement (communication). 

I. INTRODUCTION 
nternet traffic exhibits intriguing temporal scale-invariance 
properties, such as self-similarity and long memory (long-

range dependence) on various time scales [1][3]. Contrary 
to the classical Poisson-model assumption, these properties 
emphasize time-correlation between packet arrivals. Internet 
traffic traces exhibiting such behaviour include, but are not 
limited to, cumulative or incremental data count transmitted 
over time, inter-arrival time series of IP packets, etc. 

The issue of estimating statistical parameters characterizing 
self-similarity and long-range dependence (LRD) has been of-
ten studied, aiming at best modelling of traffic for example to 
the purpose of network simulation. Several algorithms have 
been developed, in particular, to estimate the Hurst parameter 
H and the spectrum frequency power γ [1][2][4][5]. Among 
them, the logscale-diagram method is one of the best reputed. 

In a different context, the Modified Allan Variance 
(MAVAR) is a well-known time-domain analysis tool origi-
nally conceived for time and frequency stability characteriza-
tion of precision oscillators [6][10]. This variance was 
originally designed to discriminate effectively noise types with 
power-law spectrum (i.e., in broad terms, fractional noise), 
recognized very commonly in frequency sources. The use of 
MAVAR in network traffic analysis, for accurate estimation of 

H and γ of self-similar and LRD data series, was introduced 
recently in papers [11][12]. MAVAR has been demonstrated to 
feature superior spectral sensitivity and accuracy in fractional-
noise parameter estimation, coupled with outstanding robust-
ness against possible nonstationarity in data analyzed. 

In this work, we analyze IP traffic traces (bytes and packets 
per time unit) measured on a MAN link of the telecommunica-
tions operator FASTWEB, Milano, Italy. While we emphasize 
results obtained using the Modified Allan Variance (MAVAR), 
due to its numerous advantages, we also computed logscale 
diagrams to confirm experimental findings. An interesting 
snapshot of the time-correlation that may be exhibited by IP 
traffic in a real network is thus provided.  

All traffic traces analyzed exhibit prominent evidence of 
fractional noise, confirming once again the appropriateness of 
the power-law spectrum model for Internet traffic. Results ob-
tained in this study are valuable, for example, to the purpose 
of traffic synthesis in network simulation. 

II. SELF-SIMILARITY AND LONG-RANGE DEPENDENCE 
A random process X(t) (say, cumulative packet arrivals in 

the time interval [0, t]) , with t∈ℜ, is said to be self-similar, 
with scaling parameter of self-similarity or Hurst parameter 
H>0, if 

 )()( atXatX H
d

−=  (1) 

for all a>0, where =d denotes equality of all finite-dimensional 
distributions [1][2].  

Long-range dependence (LRD) of a process is defined by 
an asymptotic power-law decrease of its autocovariance or 
equivalently PSD functions [1][2]. Let Y(t), with t∈ℜ, be a 
second-order stationary stochastic process. The process Y(t) is 
long-range dependent if its autocovariance function follows  

 10,for~)( 1
1 <<+∞→− γδδδ γcRY  (2) 

or, equivalently, its power spectral density (PSD) follows  

 10,0for~)( 2 <<→− γγ ffcfSY  (3). 

It can be proved [2] that a self-similar process X(t) with sta-
tionary increments and 1/2 < H < 1 has long-range dependent 
increments Y(t) (say, packet arrivals in the last time unit), with 
 12 −= Hγ  (4). 

Strictly speaking, the Hurst parameter characterizes self-
similar processes, but it is frequently used to label also long-
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range dependent increment processes. Hence, expressions like 
“Hurst parameter of a LRD process” (characterized by the pa-
rameter γ) denote actually, by extension, the Hurst parameter 
H = (γ+1)/2 of its integral parent process.  

III. THE MODIFIED ALLAN VARIANCE 
In time and frequency measurement theory, a well-known 

tool in the time domain for stability characterization of preci-
sion oscillators is the Modified Allan Variance (MAVAR) 
[6][10]. It was proposed in 1981 by modifying the definition 
of the two-sample variance (a.k.a. Allan variance, AVAR) rec-
ommended by IEEE in 1971 for characterization of frequency 
stability [13], after the pioneering work of D. W. Allan in 1966 
[14], to improve its poor discrimination capability against 
white and flicker phase noise. This section briefly recalls 
MAVAR properties most relevant to our aim. For more details, 
the interested reader is referred to [6][10] and [11][12]. 

A. Definition in the Time Domain 
Given an infinite sequence {xk} of samples of an input sig-

nal x(t), evenly spaced in time with sampling period τ0, the 
MAVAR is defined as 
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where the observation interval is τ = nτ0 and the operator <·> 
denotes infinite-time averaging.  

In time and frequency stability characterization, the data se-
quence {xk} is made of samples of random time deviation x(t) 
of the chronosignal under test [6][13][15]. The MAVAR is thus 
a kind of variance of the second difference of {xk} or of the 
first difference of samples {yk} of the fractional frequency 
y(t)=x’(t). In very brief, it differs from the basic Allan variance 
in the additional average over n adjacent measurements: for 
n=1 (τ=τ0), the two variances coincide. 

In practical measurements, given a finite set of N samples 
xk, spaced by sampling period τ0, a simple estimate of MAVAR 
can be computed using the ITU-T standard estimator [6][16] 
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 (6) 
with n=1, 2,..., N/3. A recursive algorithm for fast computa-
tion of this estimator exists [6], which cuts down the number 
of operations needed for all values of n to ~N2 instead of ~N3. 

It should be noted that the point estimate (6), computed by 
averaging N-3n+1 terms, is a random variable itself. Exact 
computation of confidence intervals is not immediate and, an-
noyingly enough, depends on the spectrum of the underlying 
noise [17][22]. However, in general, along a plot of 
MAVAR versus τ, confidence intervals are negligible at left 
(short τ) and widen moving to right (long τ), where fewer 
terms are averaged. In our measurement results (Sec. V), 

therefore, we avoided to consider MAVAR values computed 
for largest n (right plots), where uncertainty is not negligible. 

B. Equivalent Definition in the Frequency Domain 
The MAVAR time-domain definition (5) can be translated to 

an equivalent expression in the frequency domain, allowing a 
more profound understanding of the behaviour of this quantity. 
In fact, definition (5) can be rewritten as the mean-square 
value of the signal output by a properly shaped filter receiving 
the data sequence {xk}. Hence, the MAVAR can be equiva-
lently defined as [6][15] 
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where Sx(f) is the one-sided PSD of the input signal x(t). 
Interesting enough is to notice that the function multiplying 

Sx(f)(2πf)2 under integration is pass-band, having magnitude 
shaped with a narrow main lobe centred at f ≅ 1/(3τ). Thus, 
MAVAR(τ) gathers signal power selectively from this narrow 
band: high-resolution spectral analysis of x(t) can be achieved 
by computing MAVAR over a range of τ [6][15].  

IV. USING THE MODIFIED ALLAN VARIANCE TO ESTIMATE 
PARAMETERS OF FRACTIONAL NOISE 

It is convenient to generalize the LRD power-law model of 
spectral density (3). We will deal with random processes x(t) 
whose one-sided PSD is modelled as 
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where P is the number of power-law noise types considered in 
the model, αi and hαi

 are parameters (αi, hαi
 ∈ ℜ) and fh is the 

unavoidable upper cut-off frequency. Such random processes 
are generically referred to as fractional noise, in broad sense. 

Power-law noise with -4 ≤ αi ≤ 0 has been revealed in prac-
tical measurements of various physical phenomena, such as 
phase noise of precision oscillators [6][10][13][15][20] 
and Internet traffic [1][2][11][12], whereas P should be not 
greater than few units for the model being useful. If the proc-
ess x(t) is simple LRD (3), then P=1 and -1 < αi < 0. Although 
values αi ≤ -1 yield model pathologies, such as infinite vari-
ance and even nonstationarity, this model is commonly used, 
considering also that measurements have finite duration. 

Under this general hypothesis of power-law PSD, first we 
notice that MAVAR convergence (7) is ensured for αi > -5. 
Then, by considering separately each term of the sum in (8) 
and letting P = 1, α = αi, evaluation of (7) yields correspond-
ing time-domain expressions of MAVAR. In short, for any 
value in the whole range of convergence -5 < α ≤ 0, MAVAR 
is found to obey (ideally asymptotically for n→∞, keeping 
constant nτ0 = τ, but in practice for n>5) to a simple power 
law of the observation time τ, i.e. 
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where µ = -3-α [6][10]. If P>1, it is immediate to generalize 
(9) in summation of powers i

i
A µ

µ τ . 
This is a fundamental result. If x(t) obeys (8), then a log-log 

plot of MAVAR looks ideally as a broken line made of P 
straight segments, whose slopes µi can be measured to get the 
exponent estimates αi = -3-µi of the power-law noise compo-
nents prevailing in distinct ranges of τ. 

If we consider a LRD process with PSD (3) characterized 
by Hurst parameter 1/2 < H < 1, from (4) and (9) we obtain 
 22 += µH  (10). 

In papers [11][12], these estimates of H and αi were demon-
strated to be very accurate, even better than those by the 
logscale diagram method. Moreover, nonstationary compo-
nents of various kinds in the analyzed sequence affect 
MAVAR negligibly or in a well recognizable way. Hence, we 
adopted MAVAR as main tool to analyze IP traffic traces. 

V. METHODOLOGY OF IP TRAFFIC MEASUREMENT 
We analyzed an IP traffic trace acquired in the metropolitan 

network of the telecommunications operator FASTWEB. Traf-
fic measurement was carried out on a Gigabit Ethernet link, 
for T=24 hours starting at 1.00pm of 25 Sep 2003. Only uni-
cast traffic was measured. Raw traces were acquired using 
tcpdump on a Linux PC, observing the first 68 bytes of each IP 
packet. Tcpdump captured TCP, UDP, VoIP, ICMP and other IP 
packet headers. From each header, we extracted IP packet 
length and timestamp with 1-µs resolution. The size of the 
overall traffic dump resulted about 100 GB.  

Then, we processed this raw sequence of packet length and 
timestamp data, split in 24 consecutive segments, one per each 
hour of the measurement day. By gathering data over consecu-
tive intervals τ0=10 ms (time unit), we produced 24×2 se-
quences of N=360000 samples of IP packets per time unit 
(pkts/t.u.) and bytes per time unit (bytes/t.u.). Finally, we ap-
plied our analysis tools. 

VI. RESULTS OF IP TRAFFIC TRACE ANALYSIS 
In this section, we show a small selection of experimental 

results obtained. Instead of MAVAR, we plotted its square root 
Modified Allan Deviation (MADEV). Moreover, we computed 
logscale diagrams (LD), using scripts available at [23] 
(Daubechies’ wavelet with three vanishing moments), where 
vertical bars represent 95%-confidence intervals. 

To provide a visual sketch of traffic trend, Figs. 1 and 2 
show two sample bytes/t.u. and packets/t.u. sequences, each 
made of N=360000 samples acquired over T=1 hour, starting 
at 0.00am, with time unit τ0=10 ms. By simple eye inspection, 
it is evident that the data sequences are not white and it is pos-
sible to note fractional noise. At t≅1500 s, a step-like change 
in measured data was captured; however, MAVAR is not af-
fected significantly by such a little nonstationarity [12]. 

Fig. 3 depicts the normalized histogram (i.e., estimate of 
probability distribution) of packet size values measured over 

the whole test period of 24 hours. It is interesting to note that, 
while almost all bin values from 28 bytes to 1500 bytes are not 
empty, few values gathered the vast majority of all samples. In 
particular, most common IP packet length values resulted: 40 
bytes (13%), 48 bytes (2.6%), 92 bytes (13%), 200 bytes (2%), 
576 bytes (3.4%), 1216 bytes (9%), 1500 bytes (32%).  

Figs. 4, 5, 6 and 7 depict MADEV and LD computed on the 
24-hours sequences bytes/t.u. and pkts/t.u. (N=8640000, 
τ0=10 ms). While the trend of LDs is rather irregular and is 
thus difficult to interpret, MAVAR allows a more precise and 
immediate spectral characterization of the traffic sequence (cf. 
results in [11][12]). By best fitting, it is possible to approxi-
mate MAVAR curves very well, in log-log scale, with few 
straight lines. For the bytes/t.u. sequence, their main slopes are 
µ=-2.63 (τ<2 s) and µ=-1.67 (τ>4 s). Thus, the sequence is re-
vealed to be almost exactly sum of two simple components 
having power-law spectrum (8), with α=-0.37 dominant for 
τ<2 s and α=-1.33 dominant for τ>4 s. The former noise 
(α=-0.37) is kind of LRD, with H=0.69.  

 
Fig. 1: Sample sequence bytes/t.u. (0.00am, N=360000, τ0=10 ms, T=3600 s). 

 
Fig. 2: Sample sequence pkts/t.u. (0.00am, N=360000, τ0=10 ms, T=3600 s). 
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Fig. 3: Normalized histogram of packet size values measured (T=24h). 
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Fig. 4: MADEV of sequence bytes/t.u. (T=24h, N=8640000, τ0=10 ms). 
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Fig. 5: LD of sequence bytes/t.u. (T=24h, N=8640000, τ0=10 ms). 
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Fig. 6: MADEV of sequence pkts/t.u. (T=24h, N=8640000, τ0=10 ms). 
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Fig. 7: LD of sequence pkts/t.u. (T=24h, N=8640000, τ0=10 ms). 
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Fig. 8: MADEV of sequence bytes/t.u. (4.00pm, T=1h, N=360000, τ0=10 ms). 
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Fig. 9: MADEV of sequence pkts/t.u. (4.00pm, T=1h, N=360000, τ0=10 ms). 
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Fig. 10: MADEV of sequence bytes/t.u. (0.00am, T=1h, N=360000, τ0=10ms). 
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Fig. 11: MADEV of sequence pkts/t.u. (0.00am, T=1h, N=360000, τ0=10 ms). 
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Table 1: Summary of values of α, µ and H estimated by MADEV diagrams. 

µ α H τ T Trace Ref. 
-2.63 
-1.67 

-0.37 
-1.33 

0.69 
- 

τ < 2 s 
τ > 4 s 24 h bytes/t.u. Fig. 4 

-2.78 
-1.62 

-0.23 
-1.38 

0.61 
- 

100 ms < τ < 10 s 
τ > 10 s 24 h packets/t.u. Fig. 6 

-2.79 
-1.72 

-0.21 
-1.28 

0.61 
- 

τ < 2 s 
τ > 2 s 1 h bytes/t.u. Fig. 8 

-2.73 
-1.38 

-0.27 
-1.62 

0.63 
- 

100 ms < τ < 30 s 
τ > 30 s 1 h packets/t.u. Fig. 9 

-2.85 
-1.69 

-0.15 
-1.31 

0.57 
- 

τ < 2 s 
τ > 2 s 1 h bytes/t.u. Fig. 10 

-2.87 
-1.88 

-0.13 
-1.12 

0.57 
- 

100 ms < τ < 20 s 
τ > 20 s 1 h packets/t.u. Fig. 11 

Somewhat different results are given by pkts/t.u. data. Omit-
ting to consider the slope where n is too little to let us draw a 
reliable estimate of α ((9) is derived asymptotically for n→∞), 
two main slopes are identifiable: µ=-2.80 (α=-0.20, H=0.60) 
for 100 ms < τ < 10 s and µ=-1.58 (α=-1.42) for τ > 10 s.  

Figs. 8, 9, 10 and 11 depict MADEV diagrams computed on 
the 1-hour sequences bytes/t.u. and pkts/t.u. acquired starting 
at 4.00pm and 0.00am (N=360000, τ0=10 ms). Main slopes 
and estimated values of α and H are written on graphs. 

Finally, all values of α, µ and H, estimated from MADEV 
diagrams shown, are summarized in Table 1. Some conclu-
sions can be drawn from these experimental data. Fractional 
noise with spectrum kfα, with α mostly in range -0.2 to -1.5, 
was revealed in all traces, further confirming that memoryless 
Poisson assumption is not adequate to model Internet traffic. 
Moreover, all traces exhibit noise spectrum that can be well 
approximated as simple summation of two power-law terms: 

 21
21)( αα fkfkfSx +=  (11) 

where the relative weight of factors k1 and k2 can be deter-
mined based on the intersection points of straight segments 
approximating MADEV curves.  

In all bytes/t.u. traces, we notice that: 
• the first term is dominant for τ < 2 s: -1 ≤ α ≤ -0 (H ≅ 0.6); 
• the second term is dominant for τ > 2 s and is a longer-

memory fractional noise: -2 ≤ α ≤ -1. 
Pkts/t.u. traces exhibit similar behavior, except in the very 

short term (τ < 100 ms), where however n is too little to let us 
draw reliable estimates, and in the border between the two 
noise components (τ ≅ 101 s vs. τ ≅ 100 s). 

VII. CONCLUSIONS 
We analyzed IP traffic traces measured on a MAN link of 

the operator FASTWEB. We emphasized results obtained us-
ing MAVAR, because of its superior spectral sensitivity and 
accuracy in fractional-noise parameter estimation.  

All traffic traces analyzed exhibit prominent evidence of 
fractional noise. The fine accuracy of MAVAR spectral analy-
sis allowed revealing, in all IP traces analyzed, that noise spec-
trum can be well approximated as simple sum of two power-
law terms k1f 

α1 + k2f 
α2, where -1 ≤ α1 ≤ -0 and  -2 ≤ α2 ≤ -1. 

Our tests further confirm that memoryless Poisson assump-

tion is not adequate to model Internet traffic and provide valu-
able results to the purpose of realistic input traffic synthesis in 
network simulation. 
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