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Abstract  Experimental measurements show that Internet 
traffic exhibits self-similarity and long-range dependence (LRD). 
A delicate issue is the estimation of traffic statistical quantities 
that characterize self-similarity and LRD, such as the Hurst pa-
rameter H. In this paper, we propose to use the Modified Allan 
Variance (MAVAR), a well-known time-domain tool originally 
studied for frequency stability characterization, for estimating 
the power-law spectrum and thus the H parameter of LRD traffic 
time series. This novel method is validated by comparison to one 
of the most widely adopted algorithms for analyzing LRD traffic: 
the log-scale diagram technique based on wavelet analysis. Both 
methods are applied to pseudo-random data series, generated 
with known values of H. MAVAR exhibits outstanding accuracy 
in estimating H, better than the classical log-scale method. Fi-
nally, both techniques are applied to a real IP traffic trace, pro-
viding a further example of the capabilities of MAVAR. 

Index Terms  Fractals, fractional noise, Internet, long-range 
dependence, self-similarity, traffic control (communication). 

I. INTRODUCTION 
xperimental measurements have revealed that Internet 
traffic exhibits high temporal complexity. Far from being 

dominated by well-identifiable pseudo-periodic components, 
Internet traffic features intriguing temporal scale-invariance 
properties, such as self-similarity and long memory (long-
range dependence) on various time scales [1][4]. Such ex-
amples include, but are not limited to, time series of succes-
sive TCP connection durations, cumulative data count trans-
mitted over time, inter-arrival time series of successive TCP 
connections or IP packets, etc. 

In a self-similar random process, a dilated portion of a reali-
zation (sample path) has the same statistical characterization 
than the whole. “Dilating” is applied on both amplitude and 
time axes of the sample path, according to a self-similarity pa-
rameter called Hurst parameter. On the other hand, Long-
Range Dependence (LRD) is a long-memory model for scaling 
observed in the limit of largest time scales: LRD is usually 
equated with an asymptotic power-law decrease of the autoco-
variance function. 

A delicate issue is the estimation of statistical parameters 
that characterize self-similar and LRD random processes. 
Among such quantities, the Hurst parameter H has been de-
voted particular attention in literature. By definition of self-

similarity, it enters for example into characterization of Frac-
tional Brownian Motion (FBM), fractal and multifractal proc-
esses. Several algorithms have been proposed to estimate H 
under various hypotheses [1][4][5]. 

In time and frequency measurement theory, a well-known 
time-domain tool for stability characterization of precision os-
cillators is the Modified Allan Variance (MAVAR) [6][12]. 
This variance was designed to discriminate effectively power-
law noise types, recognized very commonly in frequency 
sources. Moreover, international standard bodies specify sta-
bility requirements for telecommunications network synchro-
nization in terms of a quantity directly derived from MAVAR 
(Time variance, TVAR) [13]. 

In this work, we propose to use MAVAR for estimating the 
power-law spectrum and thus the H parameter of LRD traffic 
time series. This novel method is validated by comparison 
with one of the most widely adopted algorithms for the analy-
sis of long-range dependent traffic: the log-scale diagram tech-
nique based on wavelet analysis [4]. To this purpose, both 
methods are applied to pseudo-random data series, generated 
with known values of the H parameter. The MAVAR method 
exhibits outstanding accuracy in estimating H, higher than the 
classical log-scale method, in spite of its computational light-
weight. Finally, both techniques are applied to a real traffic 
trace, providing a further example of the capabilities of the 
MAVAR method. 

II. SELF-SIMILARITY AND LONG-RANGE DEPENDENCE 
A process X(t) (e.g., cumulative packet arrivals in the time 

interval 0-t) is said to be self-similar, with self-similarity or 
Hurst parameter H>0, if 

 0,)()( >∀ℜ∈= − atatXatX H
d

 (1) 

where 
d
=  means equality for all finite dimensional distribu-

tions [1][2]. In other terms, the statistical description of the 
process X(t) does not change by scaling simultaneously its 
amplitude by a-H and the time axis by a. Self-similar processes 
are by definition non stationary, since the moments of X, pro-
vided they exist, behave as power laws of time, i.e. 

 qHqq tXEtXE 
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In practical applications, the class of self-similar processes 
is usually restricted to that of self-similar processes with sta-
tionary increments (or H-sssi processes), which are integral of 
some stationary process. For example, the δ-increment process 
of X(t) is defined as Yδ(t) = X(t)-X(t-δ) (e.g., packet arrivals in 
δ  time units). For a H-sssi process X(t), we have 0<H<1. 

Long-Range Dependence (LRD) of a process is defined by 
an asymptotic power-law decrease of its autocovariance func-
tion [1][2]. Let Y(t), with t∈ℜ, be a second-order stationary 
stochastic process. The process Y(t) exhibits LRD if either its 
autocovariance function follows 

 )1,0(,~)( 1
1 ∈+∞→− γδδδ γcrY  (3) 

or its spectral density follows 

 )1,0(,0~)( 2 ∈→− γγ ffcfSY  (4). 

In most practical cases, 0.5<H<1 and γ=2H-1. All H-sssi proc-
esses X(t) with 0.5<H<1 have long-range dependent incre-
ments Y(t). 

Several techniques have been proposed to detect LRD and 
to estimate the Hurst parameter H in a given time series (e.g., 
traffic trace). In the time domain, the so-called variance-time 
plot method studies the covariance function of aggregated time 
series, made of samples computed by averaging windows of 
the original data set, as a function of the window width. By 
analyzing the covariance decay, as in (3), it is then possible to 
infer the spectrum power law and thus H. In the frequency 
domain, a simple periodogram plot allows to estimate H rather 
straightforward, according to the expression (4). Nevertheless, 
one of the most interesting and considered methods is the so-
called log-scale diagram, based on wavelet decomposition [4].  

III. THE MODIFIED ALLAN VARIANCE 
In time and frequency measurement theory, a well-known 

tool in the time domain for stability characterization of preci-
sion oscillators is the Modified Allan Variance (MAVAR) 

)(Mod 2 τσ y  [6][12]. This variance was proposed in 1981 by 
modifying the definition of the two-sample variance recom-
mended by IEEE in 1971 for characterization of frequency 
stability [8], following the pioneering work of D. W. Allan in 
1966 [7]. Compared to the poor discrimination capability of 
the original Allan variance against white and flicker phase 
noise, the MAVAR discriminates effectively all power-law 
noise types recognized very commonly in frequency sources. 
Since then, international standard bodies have specified sev-
eral stability requirements for telecommunications clocks in 
terms of a quantity directly derived from MAVAR (Time Vari-
ance, TVAR) [13]. 

Given an infinite sequence {xk} of samples evenly spaced in 
time with sampling period τ0, the MAVAR is defined as 
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where the observation interval is τ=nτ0. In time and frequency 
stability characterization, the data sequence {xk} is made of 
samples of random time deviation x(t) of the chronosignal un-
der test. To summarize, modified Allan variance differs from 
basic Allan variance in the additional average over n adjacent 
measurements. For n=1 (τ=τ0), the two variances coincide. 

In practical measurements, given a finite set of N samples 
{xk}, spaced by sampling period τ0,an estimate of MAVAR can 
be computed using the ITU-T standard estimator [6][13] 
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with n=1, 2,..., N/3. A recursive algorithm for fast computa-
tion of this estimator exists [6], which cuts down the number 
of operations to ~N instead of ~N2. 

IV. USING THE MODIFIED ALLAN VARIANCE FOR ESTIMATING 
THE HURST PARAMETER 

Following its definition, the MAVAR can be seen as the 
mean-square value of the signal output by a hypothetical filter, 
with proper impulse response shaped according to (5), receiv-
ing the data sequence {xk}. Hence, the MAVAR can be also 
defined in the frequency domain [6][12], as the area under the 
spectral density of the signal output by such filter, i.e. 
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where Sx(f) is the power spectral density of input signal x(t). 
We are interested in power-law processes, whose spectral 

density behaves asymptotically for f→0 as 

 αfkfSx 1~)(  (8) 

for -1 ≤ α ≤ 0 (LRD). Under this hypothesis (actually for the 
whole range -4 ≤ α ≤ 0, α∈ℜ), the MAVAR obeys asymptoti-
cally to a power law of the observation time τ, as 

 µττσ 2
2 ~)(Mod ky  (9) 

where µ = -3-α [6][12]. 
By definition of LRD, the autocovariance of a long-range 

dependent process x(t) follows the asymptotical behavior (3) 
and its spectral density follows (4), with 0 < γ < 1. Since 
γ = 2H-1 (0.5 < H < 1), considering a relatively high number 
of samples (ideally n→∞) we obtain 

 µτσ 2
2 ~Mod ky  (10) 

yielding the remarkable linear relation in a log-log plot 

 ττσ log)2(~)(log 2 −+ Hky  (11). 

Therefore, we can estimate the Hurst parameter of a LRD 
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sample realization {xk} following this procedure: 
1) compute MAVAR(τ) with the estimator (6), based on the 

data sequence {xk}; 
2) estimate its average slope µ in a log-log plot, at least in 

some intervals of values of τ, by best fitting a straight line to 
the curve (e.g., by least square error); 

3) get the estimate of the Hurst parameter as 

 2
2

+= µH  (12). 

It is worthwhile noticing that the estimate of MAVAR com-
puted from a finite number of samples is a random variable it-
self. Its variance can be computed and used to assess the un-
certainty of the estimate of H [10][6]. In our tests, neverthe-
less, we used the values of MAVAR computed for small n (left 
portions of plots), which have negligible uncertainty. 

V. METHOD VALIDATION AND ACCURACY EVALUATION 
In this section, this method for estimating the Hurst parame-

ter is validated by comparison with one of the most widely 
adopted algorithms for the analysis of long-range dependent 
traffic: the log-scale diagram technique based on wavelet 
analysis [4].  

To this purpose, both methods were applied to LRD pseudo-
random data series {xk} of length N, each generated with as-
signed spectrum Sx(f)~1/fγ (0<γ<1), according to specific val-
ues of H=(γ +1)/2. The generation algorithm is by Paxon [14]. 
In very short, it is based on spectral shaping: a vector of ran-
dom complex samples, each with mean amplitude equal to the 
square root of the desired value of Sx(fk) and phase uniformly 
distributed in [0, 2π], is inversely Fourier-transformed to yield 
the time-domain sequence {xk}. 

In our first test, five sequences {xk} of length N=50000, 
with mean 0 and variance 1, were generated for each value of 
H={0.50, 0.55, 0.60, ..., 0.95}. On the resulting 45 traces, we 
applied both the MAVAR and the log-scale diagram methods, 
getting two sequences of estimates. We then calculated the ab-
solute and relative inaccuracy of these estimates with respect 
to the generation value H. 

Fig. 1 shows three sample plots of Mod σy(τ) (Modified 
Allan Deviation, MADEV, square root of MAVAR) evaluated 
on pseudo-random LRD sequences for H=0.55, 0.75, 0.95. 
The three curves are almost linear and with expected slope, 
confirming the correctness of the simulation procedure and the 
effectiveness of MAVAR in discriminating power-law spectra. 

In Fig. 2, the H values imposed in generating the pseudo-
random sequences are compared to the H values estimated by 
the MAVAR method. Bars of max/min values, out of the 5 es-
timates per each H value, are superposed to the ideal line. In 
Fig. 3, the same comparison is made between imposed H and 
H estimated by the log-scale diagram method.  

Moreover, Figs. 4 and 5 show the estimation errors of H by 
the two methods (cf. Figs. 2 and 3). Bars of max/min errors 
and mean error, out of the 5 estimates per each H value, are 
plotted. By inspection of these graphs, it is evident that, while 
both methods feature good accuracy, the MAVAR technique is 
better performing, because it achieves smaller error bars and 

no error bias towards positive or negative values. 
Now, it is interesting to assess the accuracy of the two 

methods with short sequences. With sequences made of few 
samples, the use of the log-scale diagram may be misleading, 
as it is based on the estimation of the variance of wavelet coef-
ficient details, which are only log2N at most, where N is the 
number of samples. The MAVAR method, on the other hand, 
may suffer poor confidence in variance estimates. 

Therefore, we repeated the same test as before, but by gen-
erating 45 sequences of length N=200000 and by truncating 
them to the first 1000 samples. Analogously to previous 
graphs, Figs. 6 and 7 compare the H values estimated with the 
two methods to the values imposed in noise generation, while 
Figs. 8 and 9 compare estimation errors. In this case, the better 
accuracy of the MAVAR technique is even more evident, con-
sidering both the error amplitude and its bias. 

To further point out the impact of the sample sequence 
length N on the accuracy of the H estimate, we applied the 
MAVAR method to 4 different pseudo-random sequences, 
generated with H=0.75 and truncated to increasing lengths, up 
to N=50000. The graph in Fig. 10 plots the error of the result-
ing estimates as a function of N. 

VI. APPLICATION TO A REAL IP TRAFFIC TRACE 
Finally, we compared the behavior of the MAVAR and log-

scale methods on a real IP traffic trace, obtained by counting 
the packets transmitted per time unit on a transoceanic system 
(MAWI Project [15]). The data sequence is made of 
N=216=65536 samples, acquired with sampling period 
τ0=8 ms, thus spanning a measurement interval T≅524 s. 

First, we computed the log-scale diagram shown in Fig. 11, 
using scripts available at [16] (Daubechies’ wavelet with two 
vanishing moments), where vertical bars represent 95%-
confidence intervals. The slope of the straight line best-fitting 
the left portion of the curve yields the estimate H=0.588. First, 
we notice that, because of the irregular trend of the curve, 
changing the interval on which line best-fitting is calculated 
yields slightly different results. Moreover, at the right side, the 
uncertainty of the measurement is too high to infer meaningful 
results. However, despite the multi-slope trend and the wide 
confidence bars, an average slope increase is evident there. 
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Fig. 1: Modified Allan Deviation (MADEV) evaluated on three pseudo-

random LRD noise sequences for H=0.55, 0.75, 0.95. 
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Fig. 2: Comparison of H values imposed in generating data sequences with H 

values estimated by the MAVAR method (N=50000 samples). Bars of 
max/min values, out of the 5 estimates per  each H value, and ideal line. 
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Fig. 3: Comparison of H values imposed in generating data sequences with H 

values estimated by the LOG-SCALE method (N=50000 samples). Bars of 
max/min values, out of the 5 estimates per  each H value, and ideal line. 
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Fig. 4: Estimation error of H by the MAVAR method (N=50000 samples). 
Bars of max/min errors and mean error, out of the 5 estimates per  each H 

value, are plotted. Cf. Fig. 2. 
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Fig. 5: Estimation error of H by the LOG-SCALE method (N=50000 

samples). Bars of max/min errors and mean error, out of the 5 estimates per  
each H value, are plotted. Cf. Fig. 3. 
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Fig. 6: Comparison of H values imposed in generating data sequences with H 
values estimated by the MAVAR method (N=1000 samples). Bars of max/min 

values, out of the 5 estimates per  each H value, and ideal line. 
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Fig. 7: Comparison of H values imposed in generating data sequences with H 

values estimated by the LOG-SCALE method (N=1000 samples). Bars of 
max/min values, out of the 5 estimates per  each H value, and ideal line. 
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Fig. 8. Estimation error of H by the MAVAR method (N=1000 samples). Bars 
of max/min errors and mean error, out of the 5 estimates per  each H value, are 

plotted. Cf. Fig. 6. 
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Fig. 9: Estimation error of H by the LOG-SCALE method (N=1000 samples). 

Bars of max/min errors and mean error, out of the 5 estimates per  each H 
value, are plotted. Cf. Fig. 7. 
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Fig. 10: Convergence of the MAVAR method in estimating H of 4 different 

pseudo-random sequences (H=0.75 and truncated to increasing lengths). 
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Fig. 11: Log-scale diagram of a real IP packet/time trace  

(MAWI [15], N=65536, τ0=8 ms, T≅524 s). 
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Fig. 12: Modified Allan Deviation (MADEV) of a real IP packet/time trace  

(MAWI [15], N=65536, τ0=8 ms, T≅524 s). 

Then, we computed MAVAR on the same traffic trace, ob-
taining the curve in Fig. 12. Opposite to log-scale, MAVAR 
gives an astonishingly clear picture of the spectral characteris-
tics of the traffic sequence under analysis. The MAVAR curve, 
in log-log scale, is nearly precisely made of two linear seg-
ments, with slopes µ=-2.824 (τ<10 s) and µ=-1.80 
(10 s<τ<100 s). Thus, the data sequence analyzed is revealed 
to be almost exactly sum of two simple components with 
power-law spectrum (8), with α=-0.176 dominant for τ<10 s 
and α=-1.20 dominant for 10 s<τ<100 s. The former noise 
(α=-0.176) is LRD-type, with H=0.588 (12). 

VII. CONCLUSIONS 
In this paper, we proposed to use the Modified Allan Vari-

ance, a time-domain tool originally studied for frequency sta-
bility characterization, for estimating the power-law spectrum 
and thus the H parameter of LRD traffic time series. This 
novel method was compared to one of the most widely 
adopted algorithms for analyzing LRD traffic: the logscale-
diagram technique based on wavelet analysis.  

Both methods were applied to pseudo-random data series, 
generated with known values of H. The MAVAR method 
proved very accurate in estimating H, better than the classical 
log-scale method, even despite its computational lightweight. 

Finally, both techniques were applied to a real IP traffic 
trace (MAWI [15]), providing a further example of MAVAR 
capabilities. While the log-scale method produced uncertain 
results and H estimates, the fine accuracy of MAVAR spectral 
analysis allowed to recognize that the IP trace under test is 
precisely made of two simple fractional noise components, 
having power-law spectrum k1/f 0.176 + k2/f 1.20. The first term 
is LRD, with H=0.588. 
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