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Abstract: - Since the beginning, simulation has been an essential tool for assessing the performance of synchronization
networks and of stand-alone clocks. In this paper, the issue of simulating the clock noise process in the time domain, by
generating pseudo-random sequences having specified power spectrum, is studied. In particular, the so-called power-law
noise is addressed, which is one of most adopted models used to characterize clock noise, for example in simulating the
dynamics of SDH/SONET pointer adjustments or the slip occurrence in digital switching exchanges. Therefore, an effective
algorithm to this purpose is provided. Moreover, some results of simulations of all kinds of power-law noise are provided.
The algorithm described is general and may be applied also in other contexts, to simulate noise of any kind.
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1 Introduction
Designing complex systems of clocks as synchronization
networks [1][4] is not an obvious task. In order to
describe the behavior of clocks in synchronization networks
and to accurately specify their characteristics, first it has
been necessary to identify a proper mathematical model of
the clock and of the timing signals generated and
distributed. Since the beginning, simulation has been an
essential tool for assessing the performance of
synchronization networks and of stand-alone clocks.
There is a huge literature on time and frequency stability
characterization for precision oscillators [5][20].
Historically, a dichotomy between the characterization of
oscillators in the Fourier-frequency domain and in the time
domain was established. Examples of stability measures in
the frequency domain are the Power Spectral Densities
(PSDs, or simply spectra) of the phase, time and frequency
fluctuations, since they are functions of the Fourier
frequency f. On the other hand, variances of the same
fluctuations, averaged over a given observation interval, are
examples of stability measures in the time domain, since
they are functions of the observation interval τ (time).
In this paper, the issue of simulating the clock noise process
in the time domain, by generating pseudo-random
sequences having specified PSD, is studied. In particular,
the so-called power-law noise is addressed, which is one of
most adopted models used to characterize clock noise.
Being able to generate pseudo-random sequences having
specified PSD is essential, for example, when aiming at
simulating the dynamics of SDH/SONET pointer
adjustments [21], the slip occurrence in digital switching

exchanges and, more in general, the performance of clock
chains in synchronization networks.
In Sec. II, fundamentals on clock noise characterization are
given, the basic quantities are defined and the power-law
model is introduced. Then, in Sec. III, the issue of
generating pseudo-random sequences having specified
power spectrum is studied, providing an effective algorithm
to this purpose. Finally, in Sec. IV, some results of
simulations of all kinds of power-law noise are provided.

2 Clock Noise Characterization: the Power-
Law Model
In telecommunications, a clock is a device able to supply a
timing signal, ideally periodic, usable for the control of
telecommunication systems. A mathematical model
describing an actual timing signal s(t) is given by [5][6]

s(t) = A sin Φ(t) (1)

where A is a constant amplitude coefficient and Φ(t) is the
total instantaneous phase expressed by
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where ∆ν represents the frequency offset of the actual clock
from the nominal frequency νnom, D is the linear fractional
frequency drift rate, mainly describing oscillator ageing
effects, ϕ(t) is the random phase deviation, modelling
oscillator intrinsic phase noise sources, and Φ0 is the initial
phase offset.
The generated Time function T(t) of a clock is defined, in
terms of its total instantaneous phase, as
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It is worthwhile noticing that for an ideal clock Tid(t)=t
holds, as expected. Also the random phase deviation ϕ(t) is
often expressed in terms of time, as
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Moreover, for a given clock, the Time Error function TE(t)
between its time T(t) and a reference time Tref(t) is defined
as

TE(t) = T(t)-Tref(t) (5)

For a clock slaved to the reference timing signal, x(t)=TE(t)
holds.
In the frequency domain, the model most frequently used to
represent the clock output phase noise is the so-called
power-law model [6]. In terms of the one-sided Power
Spectral Density (PSD) of x(t) such model is expressed by
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where the h-2, h-1, h0, h+1 and h+2 coefficients are device-
dependent parameters and fh is an upper cut-off frequency,
mainly depending on low-pass filtering in the oscillator and
in its output buffer amplifier. This clock upper cut-off
frequency is usually in the range 10-100 kHz in precision
frequency sources.
The five types of the model (6) are: White Phase
Modulation (WPM) for α=0, Flicker Phase Modulation
(FPM) for α=-1, White Frequency Modulation (WFM) for
α=-2, Flicker Frequency Modulation (FFM) for α=-3 and
Random Walk Frequency Modulation (RWFM) for α=-4.

3 Generation of Pseudo-Random Sequences
by Spectral Shaping
In this section, the issue of generating pseudo-random
sequences having specified PSD is studied. This is the main
issue, in order to simulate clock phase instabilities
according to some suitable model such as the power law (6)
for the phase noise spectrum. Therefore, the task of the
procedure outlined in this section is to generate a pseudo-
random sequence {xi} of N samples with custom power
spectrum Sx(f). Obviously, samples may represent TE or
frequency samples.
The generation algorithm is outlined in Fig. 1. First, two
independent sequences {ai} and {bi} of N random numbers
uniformly distributed and with negligible correlation
between them (i.e., with white spectrum) are generated
(white uniform deviates).
Then, one sequence {ci} of N white-spectrum numbers with
Gaussian distribution  (white Gaussian deviates) is

computed through the following transformation (Box-
Muller method [22][23])
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by choosing any of the two sequences {yi1} and {yi2} as
{ci}.
Spectral shaping of the white-spectrum sequence {ci} is
then accomplished through Fast Fourier Transform (FFT),
by filtering with suitable transfer function H(fn) so that
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 denotes the two-sided PSD and K is a
normalization factor, to finally yield the sequence {xi}.
In this case, the burden of convolution algorithms such as
overlap-and-add and zero-padding methods [22] is
unnecessary, since the only constraint is to get a sequence
just having the custom power spectrum Sx(f). The resulting
procedure can be thus straightforward indeed: the {ci} data
set is just crammed into computer memory, FFTed,
multiplied sample-by-sample by {Hn} and inversely FFTed
back to yield {xi}.
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Fig. 1: Generation of the pseudo-random
sequence of TE samples {xi}.

4 Simulation of Power-Law Noise
This section shows some results of simulations of all five
kinds of power-law noise (6), obtained by applying the
generation algorithm outlined in Fig. 1.
First, in order to simulate WPM (α=0) noise, two white and
uniformly distributed pseudo-random sequences of length
N=218=262144 were generated.
Then, applying the transformation formula (7), one white
Gaussian pseudo-random sequence of the same length was
obtained, thus simulating Gaussian WPM noise.
Spectral shaping was then accomplished by filtering in the
Fourier domain the WPM (α=0) noise sequence through
integrators of fractional order -α/2 [24], having transfer
function H-α/2(f)=K(j2πf)α/2, to generate the FPM (α=-1),
WFM (α=-2), FFM (α=-3) and RWFM (α=-4) noise
sequences according to the power-law model (6).
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Fig. 2:
First eighth of the generated WPM noise sequence (α=0).
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Fig. 3:
First eighth of the generated FPM noise sequence (α=-1).
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Fig. 4:
First eighth of the generated WFM noise sequence (α=-2).
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Fig. 5:
First eighth of the generated FFM noise sequence (α=-3).
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Fig. 6:
First eighth of the generated RWFM noise sequence (α=-4).

For ease of graphical representation, it was decided to plot
only the first 32000 samples of each sequence, since most
common spreadsheet software packages do not allow the
graphical plotting of longer data sequences. In conclusion,
Figs. 2 through 6 show the first segment (i.e., one eighth of
the overall length) of the resulting five TE sequences {xn},
respectively affected by WPM, FPM, WFM, FFM and
RWFM noise.
By visual inspection of Figs. 2 through 6, it is quite
interesting to point out that the realizations of the process
TE(t) are as smoother as the parameter α in (6) is decreased.
In fact, any fα noise can be viewed as a fα+1 noise filtered
through the half-order integrator with transfer function

fjf π21)(H 2/1 = . Therefore, Figs. from 2 to 6 show

indeed what happens by repeatedly integrating a white
noise.

5 Conclusions
In this paper, the issue of simulating the clock noise process
in the time domain, by generating pseudo-random
sequences having specified power spectrum, was studied. In
particular, the so-called power-law noise was addressed. An
effective algorithm to this purpose was provided. Some



results of simulations of all kinds of power-law noise were
also provided.
The algorithm described is general and may be applied in
several contexts, to simulate noise of any kind. Applied to
simulate clock noise, for example, it has been used by the
author of this paper to simulate the dynamics of
SDH/SONET pointer adjustments [21] or the slip
occurrence in digital switching exchanges. The performance
of synchronization networks can be also assessed by
simulation.
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