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Abstract: - Time Variance (TVAR) and Maximum Time Interval Error (MTIE) are historically the main time-domain
quantities for the specification of network synchronization performance in telecommunications standards. Nevertheless, plain
computation of the TVAR and MTIE standard estimators proves cumbersome in most cases of practical interest, due to their
heavy computational weight. In this paper, TVAR and MTIE are first introduced according to their standard definitions.
Then, fast algorithms based on recursion and on binary decomposition to compute the TVAR and MTIE standard estimators
are provided, which effectively cut down the number of operations needed. The MTIE algorithm based on binary
decomposition reduces the number of operations needed to a term proportional to Nlog2N instead of N2. Both algorithms
allow fast evaluation in most practical situations: even very long sequences of TE samples do not require more than few
seconds of data processing for TVAR and MTIE computation.
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1 Introduction
Since the beginning, a major topic of discussion in standard
bodies dealing with network synchronization [1][4] has
been clock noise characterization and measurement. Among
the quantities considered in international standards for
specification of phase stability requirements, Time Variance
(TVAR) (or equivalently its square root Time Deviation,
TDEV) and Maximum Time Interval Error (MTIE) have
played historically a major role for characterizing
synchronization performance in digital telecommunications
networks [5][12].
In this paper, TVAR and MTIE are first introduced
according to their formal definitions. Then, the main issue
of their experimental measurement is pointed out: the heavy
computational weight in most cases of practical interest, due
to the number of operations nested in the direct, plain
calculation of their standard estimators. Therefore, fast
algorithms to compute the TVAR and MTIE standard
estimators are provided, which effectively cut down the
number of operations needed. Based on these algorithms,
characterization of synchronization performance in digital
telecommunications networks is made feasible even on long
sequences of Time Error (TE) samples.

2 Definition of TVAR and MTIE
Thorough treatments of clock stability characterization are
provided by survey papers [12][15]. Moreover, detailed
treatises of MTIE and of its properties can be found in

[16][17]. In this section, solely the main definitions are
summarized for the sake of understanding and to provide
the reader with the background concepts.
A general expression describing a pseudo-periodic
waveform which models the timing signal s(t) at the clock
output is given by [13][18]
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where A is the peak amplitude and Φ(t) is the total
instantaneous phase, expressing the ideal linear phase
increasing with t and any frequency drift or random phase
fluctuation.
The generated Time function T(t) of a clock is defined, in
terms of its total instantaneous phase, as
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where νnom represents the oscillator nominal frequency. It is
worthwhile noticing that for an ideal clock Tid(t)=t holds, as
expected. For a given clock, the Time Error function TE(t)
(in standards also called x(t) ) between its time T(t) and a
reference time Tref(t) is defined as

x(t) ≡ TE(t) = T(t)-Tref(t) (3).

The Time Variance (TVAR) has been introduced aiming at
measuring time stability. It is defined as
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where )(Mod 2 τyó  is the Modified Allan Variance

[12][15], well known in the field of frequency stability
measurement. TVAR has dimension [time2] and has been
widely adopted in telecommunications international
standards for the specification of timing interfaces. Time
Deviation (TDEV) is defined as the square root of TVAR.
The Maximum Time Interval Error function MTIE(τ,T) is
the maximum peak-to-peak variation of TE in all the
possible observation intervals τ (in former standards [5][6]
denoted as S) within a measurement period T (see Fig. 1)
and is defined as
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Fig. 1. Definition of MTIE(τ,T ).

3 Measurement of TVAR and MTIE and
Their Standard Estimators
Measurement of TVAR and MTIE is based on the time-
domain measurement of the TE process x(t) between the
output of the Clock Under Test (CUT) and a reference
timing signal, which may be its input if the CUT is a slave
clock (synchronized clocks configuration), or the output of a
second Reference Clock if the CUT is a free-running clock
(independent clocks configuration) [7][11]. Sequences of N
TE samples {xi}, defined as

( ) Niitxxi K,3,2,1)1( 00 =−+= τ (6),

where t0 is the initial observation time and τ0 is the
sampling period, are measured using digital counters and
stored for numerical post-processing over a total
measurement period T=(N-1)τ0 [12][16]. The samples xi are
typically measured between two corresponding zero-
crossings of the timing signals involved.
Starting from the sequence {xi} of TE samples measured,
the definitions (4)(5) may be applied directly to compute
TVAR(τ) and MTIE(τ,T). Thus, the following standard

estimators have been defined by the ITU-T [7] and ETSI
[11] bodies:
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where τ=nτ0 is the observation interval and z denotes "the
greatest integer not exceeding z".

4 Fast Computation of TVAR Estimator by
Recursion Algorithm
Plain computation of the TVAR standard estimator (7)
requires execution of two nested summation loops, thus
yielding a computational complexity in the order of N2

operations for each value TVAR(τ) to compute. To save
evaluation time, the expression (7) can be written as
follows:
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The computational weight of this expression can be reduced
by noting that the terms Tj(n) can be evaluated recursively,
as
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The first term T1(n) requires 3n-1 additions, but the next
terms Tj(n) for j>1 can be calculated with only four further
additions.



5 Fast Computation of MTIE Estimator by
Binary Decomposition
Plain computation of the MTIE standard estimator (8) has
computational complexity in the order of N2 operations for
each value MTIE(τ,T) to compute. This Section describes
the fast algorithm based on binary decomposition proposed
originally in [19]. With this algorithm, the number of
operations needed is reduced to a term proportional to
Nlog2N instead of N2. A heavy computational saving is
therefore achieved, thus making feasible MTIE evaluation
based on even long sequences of Time Error (TE) samples.

5.1 Plain Computation of the Estimator
Let N=NT=T/τ0+1 be the total number of available TE

samples in the sequence {xi} and Nτ=τ/τ0+1 be the number
of samples available in a window (observation interval) of
span τ. Then, for each single value MTIE(τ,T ) the
following expression has to be computed (cf. eq. (8)):
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As pointed out in [16], the number of samples NT to process
may get easily to the order of 105 in most cases of practical
interest, if we are interested in a somehow accurate
characterization of the clock noise. It is obvious that the
plain computation of the estimator (13) is unadvisable and
quickly tends to be unmanageable, due to the number of
operations nested in evaluation loops.

5.2 Binary-Decomposition Algorithm
The fast algorithm is based on a binary decomposition of a
TE sequence {xi} made of N=NT=2kMAX samples in nested
windows made of Nτ=2k samples (k=1, 2, 3, ..., kMAX).
MTIE can be then evaluated recursively for each window
size 2k.
As the first step (k=1), all the possible 2-points windows
(τ=τ0) are analyzed in the TE sequence: for each of them,
the maximum and minimum values are stored. Their
difference is the MTIE(τ0) measured in that window, and
the maximum of the MTIE values of all the 2-points
windows is the resulting MTIE(τ0,T) of the whole sequence.
At this first step, there is no computational saving yet
compared to the plain computation of the standard
estimator.
Then, as second step (k=2), all the possible 4-points
windows (τ=3τ0) are considered. The maximum and
minimum values of each of these windows can be obtained
by comparing the maximum and minimum values of the
two 2-points windows in which the 4-points window can be
split. The difference between the maximum of the two
maxima and the minimum of the two minima is the
MTIE(3τ0) measured in that 4-point window. The

maximum of the MTIE values of all the 4-point windows is
the resulting MTIE(3τ0,T) of the whole sequence.
The next step (k=3) is to consider all the possible 8-points
windows (τ=7τ0), split in two 4-points windows. Then so
on, for increasing integer values of k. The computational
saving of this algorithm, compared to the plain computation
of the standard estimator, lies in avoiding the comparison of
all the samples in the windows of size larger then 2. The
price to pay is that we have to limit the evaluation of
MTIE(τ,T) just to the log2NT values corresponding to the
windows made of Nτ=2k samples (this corresponds to a bit
more than three MTIE values per decade on the τ axis,
which may be considered adequate in most practical
applications).
More formally, starting from the TE sequence vector x
made of NT=2kMAX TE samples xi, two matrices AM and Am

are built. Matrices are made of NT-1 columns (indexed by i)
and log2NT rows, indexed by k. The first NT-2k+1 elements
of each k-th row of the matrix AM contain the maximum
values of all the possible 2k-points windows sliding from
left to right along the TE sequence {xi}. The matrix Am

contains, in an analogous fashion, the corresponding
minimum values of the 2k-points windows. Therefore, the
set of all the possible 2k-points windows in the whole TE
sequence is completely described by the couple of vectors
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where aM/k and am/k are the k-th rows taken from the
matrices AM and Am respectively.
The first row (k=1) of matrices AM and Am is obtained
directly by the TE sequence vector x as
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for i=1, 2,..., NT-1. The next rows (k>1), instead, are
obtained recursively as
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where p=2k-1, for i=1, 2,..., NT-2k+1.

Finally, the value MTIE(τ,T) for τ=(Nτ-1)τ0 and Nτ=2k (here
denoted as MTIEk for the sake of brevity) can be evaluated
from the k-th rows of the matrices AM and Am as
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5.3 Computational Saving
The number of operations involved in the estimator plain
computation and that in the binary-decomposition algorithm
have been evaluated, in order to assess the resulting
computational saving. It can be shown [19] that:



• the MTIE plain computation involves a number of
operations (mainly comparison-test branches and
variable assignments) in the order of N2, if we limit
MTIE computation to one value per octave on the τ axis
as in the binary-decomposition algorithm (if MTIE is
computed for all the possible N-1 values of τ, then the
number of operations required becomes proportional to
N3 instead);

• the number of operations (again, mainly comparison-test
branches and variable assignments) needed by the
binary-decomposition algorithm is reduced to be
proportional to Nlog2N.

Finally, it may be interesting to know how long do both
algorithms take to execute with practical values of N on
some average/low-power computer. To this purpose, both
algorithms have been programmed in C language, compiled
and run for testing on a SUN Sparc Server 10 under UNIX
operating system (SunOS). The plain computation of the
MTIE estimator, one value per octave, required about
1100 s of actual execution time on a sequence of N=65536
samples (practical TE sequences may be longer). The binary
decomposition algorithm, on the same sample sequence,
needed just something more than one second to complete
execution.

6 Conclusions
In this paper, fast algorithms to compute the TVAR and
MTIE standard estimators were provided. These algorithms
prove effective in achieving a strong computational saving:
MTIE algorithm reduces the number of operations needed
to be proportional to Nlog2N instead of N2. Both algorithms
allow fast evaluation in most practical situations: even very
long sequences of TE samples do not require more than few
seconds of data processing for TVAR and MTIE
computation. Therefore, they may be conveniently adopted
by telecommunications engineers involved in time-domain
measurement of clock stability.

References
[1] W. C. Lindsey, F. Ghazvinian, W. C. Hagmann and K.

Dessouky, "Network synchronization", Proceedings of
the IEEE, vol. 73, no. 10, Oct. 1985, pp. 1445-1467.

[2] P. Kartaschoff, "Synchronization in digital
communications networks", Proceedings of the IEEE,
vol. 79, no. 7, July 1991, pp. 1019-1028.

[3] J. C. Bellamy, "Digital network synchronization",
IEEE Communications Magazine, vol. 33, no. 4, Apr.
1995, pp. 70-83.

[4] S. Bregni, "A historical perspective on network
synchronization", IEEE Communications Magazine,
vol. 36, no. 6, June 1998.

[5] ITU-T Recs. G.810 Considerations on Timing and
Synchronization Issues, G.811 Timing Requirements at
the Outputs of Primary Reference Clocks Suitable for
Plesiochronous Operation of International Digital
Links, G.812 Timing Requirements at the Outputs of
Slave Clocks Suitable for Plesiochronous Operation of
International Digital Links. Geneva: Blue Book, 1988.

[6] ANSI T1.101-1994 Synchronization Interface
Standard.

[7] ITU-T Rec. G.810 Definitions and Terminology for
Synchronisation Networks. Geneva: Aug. 1996.

[8] ITU-T Rec. G.811 Timing Characteristics of Primary
Reference Clocks. Geneva: Sep. 1997.

[9] ITU-T Rec. G.812 Timing Requirements of Slave
Clocks Suitable for Use as Node Clocks in
Synchronization Networks. Geneva: June 1998.

[10] ITU-T Rec. G.813 Timing Characteristics of SDH
Equipment Slave Clocks (SEC). Geneva: Aug. 1996.

[11] ETSI Draft ETS 300 462 Transmission and
Multiplexing (TM); Generic Requirements for
Synchronisation Networks (Parts 1-6). 1997.

[12] S. Bregni, "Clock stability characterization and
measurement in telecommunications", IEEE Trans
Instrum. Meas., vol. 46, no. 6, Dec. 1997.

[13] J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D.
B. Leeson, T. E. McGunigal, J. A. Mullen Jr., W. L.
Smith, R. L. Sydnor, R. F. C. Vessot and G. M. R.
Winkler, "Characterization of frequency stability",
IEEE Trans. Instrum. Meas., vol. 20, no. 2, May 1971.

[14] J. Rutman and F. L. Walls, "Characterization of
frequency stability in precision frequency sources",
Proceedings of the IEEE, vol. 79, no. 7, pp. 952-960,
July 1991.

[15] M. Carbonelli, D. De Seta and D. Perucchini,
"Characterization of timing signals and clocks",
European Trans. on Telecommunications, vol. 7, no. 1,
Jan.-Feb. 1996.

[16] S. Bregni, "Measurement of Maximum Time Interval
Error for telecommunications clock stability
characterization", IEEE Trans. Instrum. Meas., vol. 45,
no. 5, Oct. 1996.

[17] S. Bregni and F. Setti, "Impact of the anti-aliasing pre-
filtering on the measurement of Maximum Time
Interval Error", Proceedings of IEEE GLOBECOM
'97, Phoenix, AZ, USA, November 1997.

[18] S. Bregni, “Clocks in telecommunications”, in
Encyclopedia of Electrical and Electronics
Engineering, edited by John G. Webster. New York: J.
Wiley and Sons, 1999.

[19] S. Bregni, S. Maccabruni, "Fast computation of
Maximum Time Interval Error by binary
decomposition", IEEE Trans. Instrum. Meas., Vol. 49,
No. 6, Dec. 2000.


