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ABSTRACT 

Internet traffic exhibits self-similarity and long-range dependence (LRD) on various time scales. In 

this paper, we propose to use the Modified Allan Variance (MAVAR) and a Modified Hadamard Variance 

(MHVAR) to estimate the Hurst parameter H of LRD traffic series or, more generally, the exponent α of 

data with fα (α < 0) power-law spectrum. MHVAR generalizes the principle of MAVAR, a time-domain 

quantity widely used for frequency stability characterization, to higher-order differences of input data. In 

our knowledge, this MHVAR has been mentioned in literature only few times and with little detail so far.  

The behaviour of MAVAR and MHVAR with power-law random processes and some common 

deterministic signals (viz. drifts, sine waves, steps) is studied by analysis and simulation. The MAVAR 

and MHVAR accuracy in estimating H is evaluated and compared to that of wavelet Logscale Diagram 

(LD). Extensive simulations show that MAVAR and MHVAR achieve significantly better confidence and 

no bias in H estimation.  Moreover, MAVAR and MHVAR feature a number of other advantages, which 

make them valuable to complement other established techniques such as LD. Finally, MHVAR and LD 

are also applied to a real IP traffic trace. 

Note 
Part of this paper is based on “Improved Estimation of the Hurst Parameter of Long-Range Dependent Traffic Using the 

Modified Hadamard Variance“, by S. Bregni and L. Jmoda, appeared in Proc. of IEEE ICC 2006, Istanbul, Turkey, June 2006. 
Work partially funded by Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR), Italy, under PRIN project 

MIMOSA. 
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I. INTRODUCTION 

Internet traffic exhibits intriguing temporal correlation properties, such as self-similarity and long 

memory (long-range dependence) on various time scales [1]⎯[4]. Contrary to the classical Poisson 

assumption, these properties emphasize long-range time-correlation between packet arrivals. Fractional 

noise and fractional Brownian motion models are often used to describe such behaviour of Internet traffic 

series, which include, but are not limited to, cumulative or incremental data count transmitted over time, 

inter-arrival time series of successive TCP connections or IP packets, etc. 

In a self-similar random process, a dilated portion of a realization (sample path) has the same 

statistical characterization than the whole. “Dilating” is applied on both amplitude and time axes of the 

sample path, according to a scaling parameter H called Hurst parameter. On the other hand, long-range 

dependence (LRD) is a long-memory property observed on large time scales, usually equated with an 

asymptotic power-law decrease of the power spectral density (PSD) ~f -γ or, equivalently, of the 

autocovariance function. Under some hypotheses, the integral of a LRD process is self-similar (e.g., 

fractional Brownian motion, integral of fractional Gaussian noise). 

In literature, a well-studied topic is the estimation of parameters that characterize self-similar and 

LRD random processes, aiming for example at best modelling traffic to the purpose of network 

simulation. Several algorithms exist, in particular, to estimate the parameters H and γ. To this aim, 

prominent attention has been given to methods based on wavelets [1]⎯[9]. 

In a different context, the Modified Allan Variance (MAVAR) is a well known time-domain 

quantity, originally proposed in 1981 for frequency stability characterization of precision oscillators 

[10]⎯[14], purposely designed to discriminate noise types with power-law spectrum, recognized very 

commonly in frequency sources. Moreover, telecommunications standards (ANSI, ETSI, ITU-T) specify 

some network synchronization requirements in terms of Time Variance (TVAR), closely related to 

MAVAR [15]. 

In paper [16], MAVAR was proposed for the first time as traffic analysis tool, to estimate 

parameters H and γ of LRD traffic series, pointing out its superior estimation accuracy and spectral 
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sensitivity. MAVAR was successfully applied to real network traffic analysis, allowing to identify 

fractional noise in measurement data [16]⎯[18]. 

In this paper, we refine and extend the scope of research [16], investigating further the properties of 

MAVAR as well as of some other time-domain variances, with the aim at improving the estimation 

accuracy of H and γ. MAVAR and a Modified Hadamard Variance (MHVAR) are studied by analysis and 

simulation. In our knowledge, this particular Hadamard variance has been mentioned in literature only 

few times and has not been treated in detail so far. Then, methods based on MAVAR and MHVAR to 

estimate the Hurst parameter and, more generally, to identify fractional noise components in traffic data 

are proposed. 

Extensive simulations show that MAVAR and MHVAR achieve the highest confidence with no 

bias in H and γ estimation. Both methods have been evaluated on thousands of pseudo-random LRD data 

series and compared to the well-established logscale diagram (LD) technique based on wavelet analysis 

[3][8]. Moreover, the behaviour of MAVAR and MHVAR on some deterministic signals (viz. drifts, steps 

and periodic components), common examples of nonstationarity in data under analysis, is studied. 

Finally, a real IP traffic trace is also analyzed, providing a sound example of application. 

II. SELF-SIMILARITY AND LONG-RANGE DEPENDENCE 

A random process X(t) (say, cumulative packet arrivals in time interval [0, t]), is said to be self-

similar, with scaling parameter of self-similarity or Hurst parameter H>0, H∈ℜ, if 

  (1) )()( atXatX Hd −=

for all a>0, where  denotes equality for all finite-dimensional distributions [1][2][3][19]. In other 

terms, the statistical description of X(t) does not change by scaling simultaneously its amplitude by a-H 

and the time axis by a. 

d=

In practice, the class of self-similar (H-SS) processes is usually restricted to that of self-similar 

processes with stationary increments (or H-SSSI processes), which are “integral” of some stationary 

process. For example, consider the δ-increment process of X(t), defined as Yδ(t) = X(t)-X(t-δ) (say, packet 

arrivals in the last δ time units). For a H-SSSI process X(t), Yδ(t) is stationary and 0 < H < 1 [2][3][19]. 

December 27, 2006 Ver. II – Submitted to IEEE Transactions on Communications 3 

Page 3 of 27

IEEE Transactions on Communications

Under review for possible publication in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Accurate Estimation of the Hurst Parameter of Long-Range Dependent Traffic Using Modified Allan and Hadamard Variances S. Bregni 

Long-range dependence (LRD) of a process is defined by an asymptotic power-law decrease of its 

autocovariance or equivalently PSD functions [1][2][3]. Let Y(t) be a second-order stationary stochastic 

process. The process Y(t) exhibits LRD if its autocovariance function follows asymptotically  

 10,for~)( 1
1 <<+∞→− γδδδ γcRY  (2) 

or, equivalently, its power spectral density (PSD) follows asymptotically 

 10,0for~)( 2 <<→− γγ ffcfSY  (3). 

In general, a random process with non-integer power-law PSD is also known as fractional (not 

necessarily Gaussian) noise. It can be proven [2][3] that H-SSSI processes X(t) with 1/2 < H < 1 have 

long-range dependent increments Y(t), with 

 12 −= Hγ  (4). 

Strictly speaking, the Hurst parameter characterizes self-similar processes, but it is frequently used 

to label also the LRD increments of H-SSSI processes. In this paper, we follow this common custom with 

no ambiguity. Hence, the expression “Hurst parameter of a LRD process” (characterized by parameter γ) 

denotes actually, by extension, the Hurst parameter H = (γ+1)/2 of its integral H-SSSI parent process. 

By definition, LRD consists in a power-law behaviour of certain second-order statistics versus the 

duration τ of the observation interval. Therefore, several techniques exist to estimate H and γ of data 

series supposed self-similar or LRD, both in the time domain (e.g., variance-time plot) and in the 

frequency domain (e.g., periodogram) [1][3][6], which are based on measuring the slope of a linear fit in a 

log-log plot. A class of more advanced techniques is based on wavelet analysis [3][5][7]⎯[9]. Among 

wavelet-based techniques, the so-called logscale diagram (LD) is of utmost importance [3][8]. It analyzes 

data over an interval of time scales (octaves), ranging from 1 (finest detail) to a longest scale given by 

data finite length. Also in this case, by observing the diagram slope, H and γ are estimated. 

III. THE MODIFIED ALLAN VARIANCE 

This section introduces MAVAR and briefly summarizes basic properties most relevant to our aim. 

The interested reader is referred to the bibliography for all details. 
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A. Background and a Wider Perspective 

In stability characterization of precision oscillators, PSD power-law models (3) are common for 

phase and frequency noise, with integer values 0 ≤ γ ≤ 4 found in experimental results (e.g., the phase 

deviation follows a random walk, when the instantaneous frequency is affected by white noise). Although 

values γ ≥ 1 yield model pathologies, such as infinite power (variance) and even nonstationarity1, this 

model is widely used, considering also that real-world constraints imply measurement finite bandwidth 

and duration. For an excellent survey on characterization of frequency stability in precision oscillators, 

read Rutman [21]. 

To circumvent such pathologies, in particular the variance increasing indefinitely with data length 

if γ ≥ 1, a useful approach is evaluating the variance of the M-th derivative (supposed stationary) of the 

process (in wavelet analysis, this is equivalent to increasing the number of vanishing moments). In 

particular, the Allan Variance (AVAR), recommended by IEEE in 1971 [22] for characterization of 

frequency stability after D. W. Allan [23], is a kind of variance of the second difference of phase samples. 

The structure function theory, developed by Lindsey and Chie [24], gives a unifying view of time-domain 

quantities evaluated more generally on the M-th difference (supposed stationary) of data. To probe 

further, see also [14] and [25]⎯[28]. 

In the different context of statistical inference, the estimation of parameters of fractional Brownian 

motions by the K-th moments of their discrete variations was studied in [29][30], covering theoretical 

aspects as robustness of estimators and convergence theorems. Although not mentioned explicitly, Allan 

and related variances may be set also in this more general framework. 

Abry and Veitch, in their fundamental paper [8] proposing the wavelet LD, did mention the AVAR 

and noticed that its definition can be rephrased in terms of the Haar wavelet. Under this perspective, the 

second difference in AVAR definition corresponds to the two vanishing moments of this wavelet. Several 

properties of Allan and related variances may be derived also via the wavelet formalism. However, while 

these Authors recognized fine qualities of AVAR for H estimation, they did not investigate it further, 

since their method based on Daubechies wavelets outperforms it. 
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A substantial improvement of AVAR is the Modified Allan Variance, which has played a 

prominent role in stability characterization of precision oscillators since 1981 [10]⎯[15]. Being based on 

data second difference, as AVAR, it converges to finite values for all power-law noise types with γ < 5 

and is insensitive to data linear drift. Nevertheless, it allows more accurate estimation of the parameter γ, 

over the full range 0 ≤ γ < 5 and in particular for 0 ≤ γ ≤ 1, where AVAR exhibits poor discrimination 

capability. These properties suggest its fruitful application also to LRD and self-similar traffic analysis 

and call for a thorough investigation on its usefulness in this field. 

B. Definition and Estimator in  the Time Domain 

Given an infinite sequence {xk} of samples of x(t) with sampling period τ0, MAVAR is defined as 
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where <·> denotes infinite-time averaging, τ = nτ0 is the observation interval and yk is the average value 

of y(t) = x'(t) over interval τ beginning at tk, i.e. the k-th sample of the first difference of {xk} with lag τ : 
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Thus, MAVAR is a kind of variance of the first difference of {yk} or of the second difference of 

{xk} (note: differences multiplied by τ). In very brief, it differs from the unmodified Allan variance in the 

additional internal average over n adjacent samples: for n = 1 (τ = τ0), the two variances coincide. 

In practice, given a finite set of N samples {xk}, spaced by τ0, an estimate of MAVAR can be 

computed using the ITU-T standard estimator [14][15] 
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 (7) 

 
1 In fractional Brownian motion, defining the precise meaning of “power spectral density”, proportional to | f |-γ with γ≥2, 

raises some conceptual concern due to nonstationarity of these processes. See [20] for a discussion and clarification. 
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with n = 1, 2, ..., ⎣N/3⎦. A recursive algorithm for fast computation of this estimator exists [14], which 

cuts down the complexity of evaluating MAVAR for all ⎣N/3⎦ values of n to O(N 2) instead of O(N 3). 

The point estimate (7), computed by averaging N-3n+1 terms, is a random variable itself. Exact 

computation of confidence intervals is not immediate and, annoyingly enough, depends on the spectrum 

of the underlying noise [31]⎯[37]. However, in general, confidence intervals are negligible at short τ and 

widen for longer τ, where fewer terms are averaged. Interval width is approximately proportional to m-1/2, 

with m equal to the number of averaged terms. In practice, being N usually in the order of 104 and above, 

 exhibits random ripple due to poor confidence only at the right end of the curve. )(Mod 2 τσ y

C. Equivalent Definition in the Frequency Domain 

As for other variances [21][38], the MAVAR time-domain definition can be translated to an 

equivalent expression in the frequency domain, allowing a more profound understanding of the behaviour 

of this quantity [13][14]. In fact, (5) can be rewritten as the mean square value of the output of a linear 

filter with impulse response hMA(n, t) properly shaped, i.e. 

 
2
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The filter impulse response hMA(n, t) is plotted in Fig. 1 for n=6 [14].  

Hence, MAVAR can be equivalently defined in the frequency domain as 
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where Sy(f) = Sx(f)·(2πf)2 is the one-sided PSD of y(t) = x'(t) and HMA(n, f ) is the filter transfer function. 

The square magnitude |HMA(n, f )|2, plotted in Fig. 2 for some values of the parameter n and having 

normalized f to 1/τ, takes the asymptotic expression, for n→∞ and keeping constant nτ0=τ : 
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 (10). 

From Fig. 2, it can be seen that this limit is approached quickly for fairly low values of n (n>4). 

This transfer function is pass-band, with a narrow main lobe at f ≅ 0.4/τ. Hence, MAVAR allows 
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high-resolution spectral analysis by computation over τ. Analogously to the wavelet LD, H and γ of LRD 

data can be estimated by observing the  curve slope in a log-log plot. )(Mod 2 τσ y

D. Going Further and Beyond 

After [16], we extended our scope of research to other time-domain variances, seeking even higher 

spectral resolution and better accuracy of estimation of H and γ. This section overviews the most 

interesting variances considered in our study, by analysis and simulation not reported here for 

conciseness. 

Total Variance (TOTVAR) and Modified Total Variance are improvements of conventional 

estimators of AVAR and MAVAR [39]⎯[42]. Total estimators improve confidence for largest 

observation intervals τ, where few samples are averaged, by periodically extending the input data 

sequence beyond its finite length. Unfortunately, total estimators suffer bias, depending on τ and the type 

of underlying noise, which affects the curve slope in log-log diagrams. In practice, taking this bias into 

account makes cumbersome to estimate H and γ from total variance slope.  

The Hadamard Variance (HVAR) was proposed by Baugh [43] in 1971 for high-resolution 

spectral analysis. Generally based on a linear combination of M+1 consecutive samples, HVAR may 

attain highest spectral selectivity, by adjusting appropriately the dead time between measurements and the 

weights of the M+1 samples [21]. In particular, the most useful definition of HVAR is based on weighting 

the M+1 samples with binomial coefficients (BC). This way, better spectral selectivity than AVAR is 

achieved [43][44]. The (M+1)-samples BC-weighted HVAR is a variance of the Mth difference of input 

data, whereas AVAR is a 2nd-difference variance, i.e. based on 3 samples (cf. Sec. III.A).  

A Total Hadamard Variance (TOTHVAR) has been defined too [44][45]. As other total variances, 

this estimator improves confidence for largest observation intervals τ, but suffers bias that makes 

cumbersome to estimate H and γ in practice. 

In spite of its highest spectral resolution, HVAR is not able to discriminate effectively white (γ = 0) 

from flicker (γ = 1) noise, similarly to AVAR. This makes plain HVAR not suitable to our aim. 

Therefore, a Modified Hadamard Variance (MHVAR) is proposed and studied in this paper. MHVAR 
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has been derived by modifying the definition of the BC-weighted HVAR analogously to MAVAR. In our 

knowledge, such a modified HVAR has been mentioned in literature only few times (a.k.a. "pulsar 

variance") and expounded with little detail so far [36][46].  

IV. THE MODIFIED HADAMARD VARIANCE 

MHVAR generalizes the principle of MAVAR to higher-order differences of input data. Most 

formulas in this section are generalizations of MAVAR formulas. 

A. Definition and Estimator in the Time Domain 

Given an infinite sequence of samples {xk} with sampling period τ0, the MHVAR of order M 

(MHVAR-M) is defined as 
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In brief, unmodified HVAR of order M is a kind of variance of the Mth difference of input data (but 

note the division by τ 2 instead of τ 2M). As MAVAR with AVAR, MHVAR differs from HVAR in the 

additional internal average over n adjacent samples: for n = 1 (τ =τ0), the two variances coincide. 

Moreover, note that, for M=2, MHVAR coincides with MAVAR. HVAR and MHVAR of order M=3 

have been mostly considered in literature [21][36][43]⎯[46]. 

In practice, given a finite set of N samples {xk}, again spaced by τ0, MHVAR can be estimated as 
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with n = 1, 2, ..., ⎣N/(M+1)⎦. For M=2, estimator (12) coincides with (7). 

As for MAVAR, exact computation of confidence intervals is not immediate and depends on the 

spectrum of the underlying noise [31][35]⎯[37][44]. However, in practice, being N usually in the order 

of 104 and above,  exhibits random ripple due to poor confidence only for largest τ. )(Mod 2
,H τσ M
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B. Equivalent Definition in the Frequency Domain 

Analogously to MAVAR (8)(9), MHVAR can be equivalently defined in the frequency domain. 

The square magnitude of the equivalent filter transfer function HMH(M, n, f ) takes the asymptotic 

expression, for n→∞ and keeping constant nτ0=τ (cf. eq. (10)): 
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As for MAVAR (M=2, Fig. 2), this limit is approached quickly for fairly low values of n (few 

units). Its square magnitude is plotted in Fig. 3 for some values of the parameter M, having omitted the 

constant factor 22(M-1)/M! and normalized f to 1/τ. All these transfer functions are pass-band, with a narrow 

main lobe at f ≅ 0.4/τ ÷ 0.5/τ, which becomes narrower by increasing M. 

V. BEHAVIOUR OF MAVAR AND MHVAR 

In this section, the behaviour of MAVAR and MHVAR-M is studied with power-law random 

signals, drifts, periodic components and steps. Although MAVAR is a particular case of MHVAR-M 

(M=2), we will mention the two quantities explicitly, for clearness and according to tradition. 

A. Power-Law Random Signals 

It is convenient to generalize the LRD power-law model of spectral density (3). As customary in 

characterization of phase and frequency noise of precision oscillators [13][14][21][34], we deal with 

random processes x(t) with one-sided PSD modelled as 

  (14) 
⎪⎩

⎪
⎨

⎧

>

≤<= ∑
=

h

h
1

0

0)(
ff

fffhfS

P

ix

i

i

α
α

where P is the number of noise types considered in the model, αi and hαi
 are parameters (αi, hαi

 ∈ ℜ) and 

fh is the upper cut-off frequency. Such random processes are commonly referred to as power-law noise or 

fractional noise. Note that x(t) is not necessarily assumed Gaussian in this model. 

Power-law noise with -4 ≤ αi ≤ 0 has been revealed in practical measurements of various physical 

phenomena (see again note1), including phase noise of precision oscillators [14][22][21][34] and Internet 
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traffic [1][16][17], whereas P should be not greater than few units for the model being meaningful. If the 

process x(t) is simple LRD (3), then P=1 and -1 < αi < 0. Finally, the case αi > 0 is less interesting and 

will be not considered in this work [3]. 

Under this general hypothesis, first we notice that, since |HMH(M, n, f )|2 behaves as ~f 2(M-1) for 

f→0, MHVAR-M convergence is ensured for αi > -1-2M, while MAVAR converges for αi > -5. Then, by 

considering separately each term of the sum in (14) and letting P=1, α=αi, evaluation of frequency-

domain definitions with (10) and (13) yields corresponding time-domain expressions  and 

. Complete formulas for MAVAR are available in [13][14]. Moreover, Rutman [21] presents 

a detailed overview about recognizing power-law random noise and polynomial drifts in time-domain 

measures, including unmodified Allan and Hadamard variances. 

)(Mod 2
,H τσ M

)(Mod 2 τσ y

In summary, under the power-law PSD model (14) (P=1) and in the whole range of convergence 

-1-2M < α ≤ 0, both MAVAR and MHVAR-M are found to obey the simple power law (ideally 

asymptotically for n→∞, nτ0=τ, but in practice for n>4) 

  (15) αµττσ µ
µ −−= 3,~)(Mod 2

,H AM

If P>1, it is immediate to generalize (15) to summation of powers . ∑i
i

i
A µ

µ τ

This is a fundamental result. If x(t) obeys (14) and assuming sufficient separation between 

components, a log-log plot of  looks ideally as a broken line made of P straight segments 

(corresponding to the piecewise linear trend of the S

)(Mod 2
,H τσ M

x(f) log-log plot), whose slopes µi yield the estimates 

αi = -3-µi of the fractional noise components dominant in different ranges of observation interval τ. 

The logscale diagram [3][8] exhibits analogous behaviour. Actually, plots of 

log(MAVAR/MHVAR) versus log(τ) can be also seen as particular logscale diagrams, since modified 

Allan and Hadamard variances can be redefined in terms of appropriate wavelets too. In [3], logscale 

diagrams displaying two regions with different average slopes are referred to as biscaling phenomenon. 

B. Deterministic Signals 

It is of utmost interest to understand the behaviour of MAVAR and MHVAR also when x(t) 
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includes deterministic components, which are major examples of nonstationarity in Internet traffic. 

1) Offset and polynomial drift. Let . By substitution in (11), we get that 

MHVAR-M (based on the M-th difference of input data) cancels data polynomial drift of order <M, but 

reveals a ~t

∑ == M
j

j
jtCtx 0)(

M drift, then assuming trend ~τ 2M-2. The MAVAR behaviour is obtained for M=2. Using 

wavelet formalism, this is explained by the fact that the MHVAR-M wavelet has M vanishing moments 

(cf. [8] Sec. III.B). 

2) Periodic Signals. Let , with Sy(f) = (A2/2)·δtfAtxty m2sin)()( π=′=  (f-fm). Then, by substitution 

in the frequency-domain definition, we get (for n→∞, nτ0=τ ):  

 ( ) )1(2
41)1(2

22
,H sinsin

!
2)(Mod −

−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= M

m
m

m
M

M f
f

f
M

A τπ
τπ

τπτσ  (16). 

The MAVAR expression is obtained for M=2. Hence, MAVAR and MHVAR ripple with period 2/fm. (cf. 

[8] Sec. III.B.3) 

3) Steps. Sudden changes of the average bit rate are not rare in Internet traffic, due for instance to 

traffic rerouting or link capacity adjustment. Let x(t) = Au(t) (with u(t) = 0 for t<0 and u(t) = 1 for t≥0). 

Since y(t) = x'(t) = Aδ(t), from (8) we get 

 [ ] 0),()(Mod 2
MA

2 =⋅= tnhAy τσ  (17). 

Thus, steps in x(t) ideally do not affect MAVAR. In practice, the estimate (7) is computed on a finite 

interval T = (N-1)τ0 and is thus dependent on both τ and T. Even so, by numerous simulations (Sec. 

VII.B), we found that MAVAR and MHVAR are significantly affected only if the step size is very high, 

provided that T is reasonably long. Anyway, MHVAR-M slope (M even) is affected less than LD. 

VI. USING MAVAR AND MHVAR FOR ESTIMATING THE HURST PARAMETER 

Let us consider a LRD process x(t) with PSD (3) and Hurst parameter 1/2 < H < 1. Then, from (4) 

and (15), MAVAR and MHVAR-M follow ~τ µ (ideally for n→∞) with µ = 2H-4. In brief, the following 

procedure is suggested to estimate H: 

1) compute MAVAR by (7) or MHVAR-M by (12), based on {xk}, for integer values 1 ≤ n < N/(M+1) 
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(we use a geometric progression of ratio 1.1, i.e. 24 values/decade, for finest rendering of trend); 

2) by least-square linear regression, estimate the average slope µ of MAVAR/MHVAR in a log-log 

plot for n>4 and excluding highest values of n, where confidence is lowest; 

3) if -3 < µ < -2 (i.e., -1 < α < 0, 0 < γ < 1), get the estimate of the Hurst parameter as 

  22 += µH  (18). 

Under the more general hypothesis of power-law PSD (14), then up to P slopes µi can be identified 

(-3 ≤ µi < 2M-2) to yield the estimates αi = -3-µi (-1-2M < αi ≤ 0) of the P components of f αI noise. 

Some care should be exercised against non-stationary terms in data analyzed (e.g., big steps, slow 

trends), which cause slope changes that may be erroneously ascribed to random power-law noise. On the 

other hand, polynomial drifts are cancelled, unless their order is greater than M. Thus, the order M can be 

conveniently adjusted. In [8] (Sec. III.B.4), similarly, it is suggested to increase the number of vanishing 

moments until the H estimate converges to a stable value, thus indicating that all smooth trends have been 

cancelled. 

A key issue is to determine the confidence of these estimates and whether they are unbiased or not. 

In [8] (Sec. III.C), this problem is studied for the H estimator based on wavelet decomposition. Provided 

that the number of the vanishing moments is chosen appropriately, the estimator is proven to be unbiased 

(or with low bias on finite data sets). Closed forms of the variance and confidence intervals of this 

estimator are derived as well, although under a number of simplifying assumptions. Since MAVAR and 

MHVAR can be rephrased in terms of appropriate wavelets, it can be argued that similar results may be 

valid also for the estimator proposed herein. 

Nevertheless, deriving exact expressions for the confidence intervals of H and αi estimates is not 

immediate. Exact computation of confidence intervals of MAVAR and MHVAR estimates is tedious and 

even depends on the spectrum of the underlying noise (Secs. III.B, IV.A). Therefore, the evaluation of 

confidence intervals of estimates of H and αi results even more complex, depending also on the algorithm 

used to estimate the average slope of curves and on the interval on which this is carried out. Being 

analysis cumbersome, we chose to evaluate empirically the accuracy of the method proposed, by 

simulation on pseudorandom data, as done for example in [6]. 

December 27, 2006 Ver. II – Submitted to IEEE Transactions on Communications 13 

Page 13 of 27

IEEE Transactions on Communications

Under review for possible publication in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Accurate Estimation of the Hurst Parameter of Long-Range Dependent Traffic Using Modified Allan and Hadamard Variances S. Bregni 

VII. SIMULATION RESULTS 

The accuracy of the MAVAR/MHVAR method was evaluated by extensive simulations, by 

comparison to the well-established wavelet LD technique [3][8]. All LD results were computed running 

standard scripts [47], using Daubechies wavelet with NV=3 vanishing moments (LD-3).  

A. Accuracy Evaluation 

The MHVAR-3, MAVAR and LD-3 methods were applied to LRD pseudo-random data series {xk} 

of length N, generated with one-sided PSD Sx(f) = hf α (-1 < α ≤ 0) for assigned values of H = (1-α)/2. The 

generation algorithm is by Paxson [48]: a vector of random complex samples, having amplitude equal to 

the square root of an exponentially-distributed variable with mean Sx(fk) and phase uniformly distributed 

in [0, 2π], is inversely Fourier-transformed to yield the time-domain sequence {xk}. Also other synthesis 

algorithms were essayed, with no substantially different results in comparing accuracies. 

First, 100 independent pseudo-random sequences {xk} of length N = 131072, with mean mx=0 and 

variance σx
2=1, were generated for each of the 11 values {Hi} = {0.50, 0.55, ..., 1.00}, corresponding to 

{αi} = {0, -0.1, …, -1.0}. On the resulting 1100 time series, we applied the MHVAR-3, MAVAR and 

LD-3 methods, getting three sets of estimates , for i = 0, 1, …, 10 and j = 1, 2, …, 100. We then 

evaluated the accuracy of these estimates, calculating the absolute estimation errors ∆

}ˆ{ , jiH

i,j = -HjiH ,
ˆ i. 

Furthermore, we repeated the same test on another set of 1100 sequences of length N = 1024, to compare 

the methods on short sequences, where results are impaired by poor confidence. 

Fig. 4 compares the estimation errors {∆i,j} attained by the three methods on sequences of 

N = 131072 samples. For each value Hi, the mean m∆i and standard deviation ±σ∆i, out of 100 estimation 

errors, are plotted. Both MAVAR and MHVAR-3 achieve better confidence (i.e., smaller σ∆i) than LD-3 

(cf. Fig. 8). Also, LD-3 estimates appear significantly biased. 

Similarly, Fig. 5 compares the estimation errors {∆i,j} on sequences of N = 1024 samples. On short 

sequences, MHVAR-3 does not outperform MAVAR (cf. Fig. 8). Yet, both MAVAR and MHVAR-3 

achieve much better confidence than LD-3, which seems less efficient on short data sequences.  

Visual comparison of MAVAR/MHVAR and LD plots, not shown here for lack of space, justifies 
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such better confidence of H estimates. Especially on short sequences, MAVAR/MHVAR log-log plots are 

far smoother and closer to the ideal linear trend than LD, even at right where confidence is worse. 

B. Impact of Steps Superposed to LRD Input Data 

We evaluated MAVAR, MHVAR-M and LD-3 on LRD data with various steps superposed (cf. 

Sec. V.B). Sequences of length N = 1024 and N = 131072 were generated as {xk} = {Auk-Q + nk} (k = 1, 

…, N), where {uk-Q} is the sampled unit step function u(t) delayed Q time units (1 < Q < N) and {nk} is a 

pseudo-random LRD series, with mn = 0 and variance σn
2 = 1, generated as before with PSD Sn(f) = hf α 

for α = -0.60 (H = 0.80). By varying extensively parameters Q and A, we found that: 

 the step impact on MHVAR-M is maximum for Q ≅ N/2 and negligible for Q→1 and Q→N; 

 for M even, input steps affect MHVAR-M curves only at the right end; 

 for M odd, input steps shift MHVAR-M curves vertically, with limited impact on their slope [49]; 

 the step size A must be at least on the order of σn to impact significantly MHVAR-M; such big 

steps are evident by simple visual inspection and may be removed before H estimation, to avoid 

erroneous identification of random power-law noise; 

 input steps affect MHVAR-M (M even) less than LD-3. 

Among many simulation results, Figs. 6 and 7 show MAVAR and LD-3 curves for N=131072, 

varying step size and delay as 0 ≤ A ≤ 2 and 0 < Q < N. MHVAR-M curves for M=3, 4 (latter ones almost 

identical to that of MAVAR) are shown in [49]. To compare MHVAR and LD graphs fairly, note that 

MHVAR is plotted over the full range n < N/(M+1), whereas LD omits the last two octaves (j>14) [47]. 

C. Impact of the Difference Order M 

We evaluated how the order M affects the MHVAR-M estimate accuracy, on 100 independent 

pseudo-random sequences {xk} of length N for each of the 11 values Hi as in Sec. VII.A. Fig. 8 plots, for 

2 ≤ M ≤ 10, the mean of the 11 mean values m∆i (dots) and of the 11 standard deviations σ∆i (bars) for 

N = 1024 (right) and N = 131072 (left). The LD-3 result is also plotted for comparison, although half out 

of scale. 

First, MAVAR and MHVAR-M estimates appear not biased. Moreover, these results confirm the 
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better confidence of MHVAR-3 compared to MAVAR for N=131072: the mean of σ∆i of MHVAR-3 

estimates is -22% than that of MAVAR, which in turn is -14% than that of LD-3 (cf. Fig. 4). This 

confidence gain is significant, since it is computed over 1100 independent estimates. For N=1024, the 

mean of σ∆i of MHVAR-3 estimates is just -3% than that of MAVAR, which is -54% than that of LD-3. 

Conversely, we notice that increasing the order M>4 does not improve confidence further for 

N=131072, whereas it even worsen it for N=1024. This behaviour on short series is explained considering 

that estimator (12) averages less terms for larger M. In general, the confidence is not improved by 

increasing the MHVAR order indefinitely, although HMH(f) becomes more selective (Fig. 2). Actually, 

better spectral resolution does not mean more accurate estimation of the fα spectrum slope, which decays 

uniformly. Moreover, the sharper is the filter transfer function, the longer is its time-domain response, and 

thus the longer the data sequence should be for achieving the same confidence. 

Quite analogous considerations hold for the number of vanishing moments NV in wavelet analysis. 

As remarked in [8] by theoretical arguments, the larger NV is, the better the H estimation by LD (smaller 

bias and variance of the estimate). However, this improvement with increasing NV is counterbalanced by 

the increase of the number of wavelet coefficients polluted by border effects due to data finite length, 

resulting in a smaller number of available wavelet coefficients and thus in a larger variance. 

VIII. EXAMPLE OF APPLICATION TO A REAL IP TRAFFIC TRACE 

We applied the MHVAR-3 and LD-3 methods on a real IP traffic series [bytes/s] measured on a 

transoceanic link (MAWI [50]). This series is made of N=61600 samples, acquired with sampling period 

τ0=10 ms over a measurement interval T=616 s. No nonstationary trends, such as steps, are evident. 

Figs. 9 and 10 plot respectively LD-3 (1 point/octave) and MHVAR-3 (24 points/decade). We 

notice that the LD-3 trend is more irregular (cf. Figs. 4 and 5), whereas MHVAR exhibits two regular 

slopes, viz. µ1 = -2.89 and µ2 = -1.8. Almost no spurious ripples are visible.  

Hence, two simple power-law (14) components are revealed by MHVAR: a main one with 

α1 ≅ -0.11 (H ≅ 0.555), dominant for 10 ms < τ < 2 s, and a secondary one with α2 = -1.2, dominant for 

2 s < τ < 20 s. Both estimates are in agreement with average slopes observed on LD-3 [47] (note that 
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octave 8 corresponds to τ ≅ 2 s).  

The different scaling behaviour exhibited by these traffic data on different observation intervals is 

somewhat common in experimental measurements [17]. In [3], such behaviour is referred to as biscaling 

phenomenon. 

IX. CONCLUSIONS AND OPEN ISSUES FOR FURTHER STUDY 

In this paper, the Modified Allan Variance and a Modified Hadamard Variance have been proposed 

for estimating the Hurst parameter H or the exponent α of traffic series with fα power-law spectrum 

(α < 0). MAVAR and MHVAR-M are kind of variances based on the second and Mth difference of input 

data, respectively. While MAVAR is widely used in frequency stability characterization and well studied 

in literature, MHVAR has been treated with little detail so far. In this work, properties of both variances 

were studied by analysis and simulation. Some other variances (e.g., total variances) were also studied, 

but resulted less interesting to the aim of H and α estimation. 

The H estimation accuracy of MAVAR and MHVAR-M was evaluated on LRD pseudo-random 

sequences, generated with assigned values of H, and compared to the Daubechies’ wavelet LD technique 

with 3 vanishing moments. Extensive simulations showed that MAVAR and MHVAR-M achieve 

significantly better confidence and are not biased in H estimation. On long sequences (N=105), the mean 

standard deviation of 1100 MHVAR-3 estimates resulted about 20% smaller than that of MAVAR, which 

in turn was about 15% smaller than that of LD-3. On short sequences (N=103), MHVAR-3 and MAVAR 

attained similar confidence, far better than LD-3 (mean deviation less than half). In general, increasing the 

order M may improve H estimation accuracy, but provided that the sequence is long enough, due to the 

larger number of samples involved in the variance definition. 

The behaviour of MAVAR and MHVAR-M with drifts, steps and periodic components in input 

data was investigated. Being based on data Mth difference (M≥2), they cancel ~tM drifts. Moreover, they 

proved quite robust against steps, being affected to a limited extent (or negligibly) and less than LD-3. 

Finally, MHVAR-3 was computed on a real IP traffic trace. Compared to LD-3, MHVAR-3 gave a 

clearer spectral characterization of the traffic series analyzed. Two simple power-law noise components 

were identified, with PSD k1/f 0.11 + k2/f 1.2, revealing different scaling behaviours dominant in different 
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observation intervals. 

As far as the computational weight is concerned, MAVAR and LD have same complexity 

O(N logN), if MAVAR is computed by recursive algorithm for n=2j, i.e. on octaves as LD. 

In conclusion, MAVAR and MHVAR-M may complement usefully other well-established 

techniques (e.g. LD), due to several advantages. Among them, we highlight in particular: 

 excellent spectral resolution (Figs. 2 and 3);  

 efficient use of input data, yielding excellent accuracy and confidence in H and α estimation, with 

negligible bias (Figs. 4, 5 and 8); it is perhaps needless to remark that, if improving accuracy by 

few percentage points in estimating H and α may be considered of little practical interest, on the 

other hand more efficient tools allow to attain any desired accuracy requiring shorter data set; 

 convergence to finite values for all types of f α processes (14) with α > -1-2M (α∈ℜ); 

 insensitivity to polynomial drifts of order up to M-1 and robustness against steps and periodic 

components, major examples of nonstationarity in traffic data; 

 computational complexity affordable in all practical cases; 

 ease of computation for any value of τ = nτ0 (n = 1, 2, ..., ⎣N/(M+1)⎦), which allows rendering the 

trend to the finest detail (cf. LD, which is computed on octaves). 

An important issue, still open for further study, is deriving analytical expressions for the 

confidence of H and αi estimates by MAVAR/MHVAR and for their bias, if any. A possible approach 

may be to adapt the analysis carried out in [8], beginning with identifying appropriate wavelets for 

rephrasing definitions of MAVAR and MHVAR. More generally, further study is needed for providing a 

clearer picture of how MAVAR and MHVAR fit in the general framework of wavelet analysis. 
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Fig. 1: Impulse response of the filter associated to the definition of MAVAR (n=6).  
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Fig. 2: Square magnitude of the MAVAR transfer function for various values of n. 
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Fig. 3: Normalized square magnitude of MHVAR-M asymptotic transfer functions. 
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Fig. 4: Absolute estimation error of H attained by MAVAR, MHVAR-3 and LD-3 methods  
(N=131072, mean and standard deviation out of 100 estimation errors). 
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Fig. 5: Absolute estimation error of H attained by MAVAR, MHVAR-3 and LD-3 methods  
(N=1024, mean and standard deviation out of 100 estimation errors). 
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Fig. 6: MAVAR computed on a pseudo-random LRD sequence {nk} (N=131072, mn=0, σn=1, 
H=0.80) with added step {Auk-Q}. 
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Fig. 7: LD-3 computed on a pseudo-random LRD sequence {nk} (N=131072, mn=0, σn=1, H=0.80) 
with added step {Auk-Q}. 
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Fig. 8: Average mean E[m∆i] and standard deviation E[σ∆i] (i = 0, …, 10) of the H estimation errors 
attained by the MHVAR-M method (2 ≤ M ≤ 10), compared to LD-3 (average results on 100 

pseudo-random sequences {xk} for each of 11 values Hi). 
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Fig. 9: Logscale diagram (3 vanishing moments) [47] of a real IP bytes/time trace 
(MAWI Project [50], N=61600, τ0=10 ms, T=616 s). 
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Fig. 10: Modified Hadamard Variance (M=3) of a real IP bytes/time trace  
(MAWI Project [50], N=61600, τ0=10 ms, T=616 s). 
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