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Abstract—Internet traffic exhibits self-similarity and long-
range dependence (LRD) on various time scales. In this paper,
we propose to use the Modified Allan Variance (MAVAR) and a
Modified Hadamard Variance (MHVAR) to estimate the Hurst
parameter H of the LRD traffic series or, more generally, the
exponent α of data with 1/fα(α ≥ 0) power-law spectrum.
MHVAR generalizes the principle of MAVAR, a time-domain
quantity widely used for frequency stability characterization, to
higher-order differences of input data. In our knowledge, this
MHVAR has been mentioned in literature only few times and
with little detail so far.

The behaviour of MAVAR and MHVAR with power-law
random processes and some common deter-ministic signals (viz.
drifts, sine waves, steps) is studied by analysis and simulation.
The MAVAR and MHVAR accuracy in estimating H is evaluated
and compared to that of wavelet Logscale Diagram (LD).
Extensive simulations show that MAVAR and MHVAR achieve
significantly better confidence and no bias in H estimation.
Moreover, MAVAR and MHVAR feature a number of other
advantages, which make them valuable to complement other
established techniques such as LD. Finally, MHVAR and LD
are also applied to a real IP traffic trace.

Index Terms—Communication system traffic, fractals, frac-
tional noise, Internet, long-range dependence, self-similarity, time
domain analysis, wavelet transforms.

I. INTRODUCTION

INTERNET traffic exhibits self-similarity and long-range
dependence (LRD) [1][2]. In a self-similar random process,

a dilated portion of a realization, by the scaling Hurst parame-
ter H , has the same statistical characterization than the whole.
On the other hand, LRD is usually equated to an asymptotic
power-law decrease of the power spectral density (PSD) ∼ fα

(for f → 0) or, equivalently, of the autocovariance function.
Under some hypotheses, the integral of a LRD process is self-
similar with H related to α (e.g., fractional Brownian motion,
integral of fractional Gaussian noise).

In literature, several algorithms have been defined to esti-
mate H and α, giving prominent attention to methods based
on wavelets [1]–[6]. In a different context, the Modified Allan
Variance (MAVAR) is a well known time-domain quantity,
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originally proposed for frequency stability characterization
of precision oscillators [7]–[11], purposely designed to dis-
criminate noise types with power-law spectrum. Telecommu-
nications standards (ANSI, ETSI, ITU-T) specify some net-
work synchronization requirements in terms of Time Variance
(TVAR), closely related to MAVAR [12]. MAVAR was also
proposed as traffic analysis tool [13]–[15], pointing out its
spectral sensitivity and superior accuracy in estimating H and
α.

In this paper, we extend the scope of research [13]. MAVAR
and a Modified Hadamard Variance (MHVAR) are studied
by analysis and simulation. In our knowledge, this particular
Hadamard variance has been mentioned in literature only few
times and not treated in detail so far. Then, methods based
on MAVAR or MHVAR to estimate H and α of traffic data
are proposed. Extensive simulations show that MAVAR and
MHVAR achieve highest confidence with no bias in H and
α estimation. Both methods have been evaluated on pseudo-
random LRD data series and compared to the well-established
wavelet logscale diagram (LD) [1][6]. Also, the behaviour of
MAVAR and MHVAR on common deterministic signals (viz.
drifts, steps and sine waves) is studied. Finally, a real IP traffic
trace is analyzed, providing a sound example of application.

II. SELF-SIMILARITY AND LONG RANGE DEPENDENCE

A random process X(t) (e.g., cumulative packet arrivals
in time interval [0, t]), is said to be self-similar (SS), with
scaling parameter of self-similarity or Hurst parameter H > 0,
H ∈ R, if

X (t) =d a−HX (at) (1)

for any a > 0, where =d denotes equality of all distributions
of any finite order [1]. The class of SS processes is usually
restricted to that of self-similar processes with stationary
increments (SSSI), which are “integral” of a stationary pro-
cess. For example, consider the δ-increment process of X(t),
defined as Yδ(t) = X(t)−X(t−δ) (e.g., packet arrivals in the
last δ time units). For a SSSI process X(t), Yδ(t) is stationary
and 0 < H < 1 [1].

Long-range dependence (LRD) of a process is defined by an
asymptotic power-law decrease of its autocovariance and PSD
[1]. Let Y (t) be a second-order stationary stochastic process.
Y (t) exhibits LRD if, equivalently, its autocovariance and two-
sided PSD follow asymptotically

RY (δ) ∼ c1 |τ |α−1 for τ → +∞, 0 < α < 1 (2)

SY (f) ∼ c2 |f |−α for f → 0, 0 < α < 1 (3)
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In general, a random process with non-integer power-law
PSD is also known as fractional (not necessarily Gaussian)
noise. SSSI processes X(t) with 1/2 < H < 1 have LRD
increments Y (t), with [1]

α = 2H − 1 (4)

Strictly speaking, H characterizes SS processes, but it is
often used to label also the LRD increments of SSSI processes.
In this paper, we follow this common custom: the expression
“Hurst parameter of a LRD process” (characterized by α)
denotes actually the parameter H = (α + 1)/2 of its integral
SSSI parent process.

By definition, LRD consists in a power-law behaviour of
certain second-order statistics versus the duration τ of the
observation interval. Therefore, several techniques to estimate
H and α of data series supposed LRD are based on measuring
the slope of a linear fit in a log-log plot.

III. THE MODIFIED ALLAN VARIANCE

A. Background

In measurements of phase and frequency noise on precision
oscillators, the power-law model (3) with α = 0, 1, 2, 3, 4
is commonly verified [16][17]. Although values α ≥ 1
yield model pathologies, such as infinite variance and non-
stationarity [18], this model is common, considering also that
real-world measurements have finite bandwidth and duration.
To circumvent such pathologies, it is useful to evaluate the
variance of the M th derivative (supposed stationary) of the
process, equivalently to increasing the number of vanishing
moments in wavelet analysis. In particular, the Allan Vari-
ance (AVAR) [19], recommended by IEEE in 1971 [20] for
frequency stability characterization, is evaluated on the 2nd

difference of phase samples. The structure function theory [21]
gives a unifying view of time-domain quantities evaluated on
the M th difference of data.

Authors of [6] did mention AVAR and noticed that its def-
inition can be rephrased in terms of the Haar wavelet. Under
this perspective, the second difference in AVAR definition
corresponds to the two vanishing moments of this wavelet.
However, while they recognized fine qualities of AVAR for
α estimation, they did not investigate it further, since their
method based on Daubechies wavelets outperforms it.

The Modified Allan Variance is an improvement of AVAR
and has played a prominent role in clock stability charac-
terization since 1981 [7]–[12]. Being based on data second
difference as AVAR, it converges on all power-law noise types
with α < 5 and is insensitive to data linear drift. In addition,
it allows more accurate estimation of α over the full range
0 ≤ α < 5 and in particular for 0 ≤ α ≤ 1, where AVAR
fails. These fine qualities suggest its fruitful application also
to LRD and self-similar traffic analysis.

B. Definition in the Time and Frequency Domains

Given an infinite sequence {xk} of samples of x(t) with
sampling period τ0, MAVAR is defined as

Modσ2
y (τ) =

1
2n2τ2

0

〈⎡⎣ 1
n

n∑
j=1

(xj+2n − 2xj+n + xj)

⎤⎦2〉
(5)

where < • > denotes infinite-time averaging and τ = nτ0 is
the observation interval. In brief, it differs from unmodified
AVAR in the internal average over n adjacent samples: for
n = 1 (τ = τ0), the two variances coincide.

As other variances [16][22], MAVAR can be equivalently
redefined in the frequency domain. In fact, def. (5) can
be rewritten as the mean square value of the output of a
linear filter receiving y(t) = x′(t) and with impulse re-
sponse hMA(n, t) properly shaped, or, by Parseval, as inte-
gral of Sy(f) · |HMA(n, f)|2. Expressions of hMA(n, t) and
|HMA(n, f)|2 are given and plotted for example in [10][11]
(Figs. 5.19, 5.20), for some values of n.

The transfer function HMA(n, f) is pass-band, with a
narrow main lobe at f ∼= 0.4/τ . Consequently, MAVAR
allows high-resolution spectral analysis by computation over
τ . Analogously to the wavelet LD, H and α of LRD data can
be estimated by a linear fit of Modσ2

y (τ) in a log-log plot.

C. Going Further: Hadamard Variances and Total Estimators

The Hadamard Variance (HVAR) was proposed by Baugh
in 1971 [23] for higher-resolution spectral analysis. Based on
a linear combination of M + 1 consecutive samples, HVAR
may attain highest spectral selectivity by adjusting parameters
[16]. In particular, weighting the M+1 samples with binomial
coefficients (BC), better spectral selectivity than AVAR is
achieved [23][24]. The (M +1)-samples BC-weighted HVAR
is a variance of the M th difference of data, whereas AVAR is
a 3-samples 2nd-difference variance (Sec. III.A).

The Total Variance, Modified Total Variance and Total
Hadamard Variance are improvements of conventional estima-
tors of AVAR, MAVAR [25]–[27] and HVAR [24][28]. Total
estimators improve confidence for largest τ , where few terms
are averaged, by periodically extending the data sequence
beyond its finite length. Unfortunately, total estimators suffer
bias, which depends on the type of underlying noise and
affects the curve slope. In practice, offsetting this bias makes
cumbersome to estimate H and α.

In spite of its highest spectral resolution, HVAR is not able
to discriminate 1/fα noise in range 0 ≤ α ≤ 1, similarly to
AVAR. Therefore, a Modified Hadamard Variance (MHVAR)
is proposed and studied in this paper. MHVAR has been
derived by modifying the definition of the BC-weighted HVAR
analogously to MAVAR. In our knowledge, such a modified
HVAR has been mentioned in literature only few times (a.k.a.
“pulsar variance”) and with little detail so far [29][30].

IV. THE MODIFIED HADAMARD VARIANCE

MHVAR generalizes the principle of MAVAR to higher-
order differences of input data. Given an infinite sequence of
samples {xk} with sampling period τ0, the MHVAR of order
M (MHVAR-M ) is defined as

Modσ2
H,M (τ ) =

1

M !n2τ 2
0

〈[
1

n

n∑
j=1

M∑
k=0

(
M

k

)
(−1)k xj+kn

]2〉
(6)

In brief, unmodified HVAR of order M is a kind of variance
of the M th difference of input data (but note the division
by τ2 instead of τ2M ). As MAVAR with AVAR, MHVAR
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Fig. 1. Normalized square magnitude of MHVAR-M asymptotic transfer
functions.

differs from HVAR in the additional internal average: for
n = 1 (τ = τ0), the two variances coincide. For M = 2,
MHVAR coincides with MAVAR. HVAR and MHVAR of
order M = 3 have been mostly considered in literature
[16][23][24][28]–[30].

In practice, given a finite set of N samples {xk}, MHVAR
can be estimated as

Modσ2
H,M (τ ) =

N−(M+1)n+1∑
i=1

[
i+n−1∑

j=i

M∑
k=0

(
M

k

)
(−1)k xj+kn

]2

M !n4τ 2
0 [N − (M + 1) n + 1]

(7)
with n = 1, 2, ..., �N/(M + 1)	. For M = 2, the estimator
(7) coincides with the ITU-T standard estimator of MAVAR
[11][12]. A recursive algorithm for fast computation of the
MAVAR estimator exists [11], which cuts down the complex-
ity of evaluating it for all �N/3	 values of n to O(N2) instead
of O(N3).

The point estimate (7) is a random variable itself. Exact
computation of confidence intervals is not immediate and de-
pends on the spectrum of the underlying noise [30]–[34][24].
However, in general, confidence intervals are negligible at
short τ and widen for longer τ , where fewer terms are
averaged. In practice, being N usually in the order of at least
104, Modσ2

H,M (τ) ripples due to poor confidence only for
largest τ .

As MAVAR, MHVAR can be equivalently defined in the
frequency domain. The square magnitude of the equivalent
filter transfer function takes the asymptotic expression, for
n → ∞ and constant nτ0 = τ :

lim
n→∞
nτ0=τ

|HMH (M, n, f)|2 =
22(M−1)

M !

(
sin πτf

πτf

)4

(sin πτf)2(M−1)

(8)
This limit is approached quickly for fairly low values of n
(e.g., n > 4, cf. [11] Fig. 5.20 for MAVAR). It is plotted in Fig.
1 for some values of the parameter M , having normalized the
peak magnitude to 1 and f to 1/τ . All these transfer functions
are pass-band, with a main lobe in 0.3/τ < f < 0.5/τ , as
narrower as M is larger.

V. V. BEHAVIOUR OF MAVAR AND MHVAR

A. Power-Law Random Signals

It is convenient to extend the power-law model (3). As
customary in characterization of clock phase and frequency

noise [10][11][16][17][32], we deal with random processes
x(t) with one-sided PSD modelled as

Sx (f) =

⎧⎨⎩
P∑

i=1

hαif
−αi 0 < f ≤ fh

0 f > fh

(9)

where P is the number of terms, αi and hαi are noise
parameters (∈ R) and fh is the upper cut-off frequency. Such
processes are often called power-law or fractional noise. Note
that x(t) is not necessarily assumed Gaussian.

Power-law noise with 0 ≤ αi ≤ 4 has been revealed
in practical measurements of various phenomena, including
clock phase noise [10][11][16][17][32] and network traffic
[1][2][14]. In case of simple LRD (3), then P = 1 and
0 < αi < 1. Finally, the case αi < 0 will be not considered
in this work [1].

Under this general model, first we notice that, since
|HMH (M, n, f)|2 behaves as ∼ f2(M−1) for f → 0, MHVAR-
M convergence is ensured for αi < 1 + 2M (MAVAR for
αi < 5). Also, by letting P = 1, α = αi and in the whole
range 0 ≤ α < 1 + 2M , MHVAR-M is found to obey the
power law (ideally asymptotically for n → ∞, nτ0 = τ , but
in practice for n > 4)

Modσ2
H,M (τ) ∼ Aμτμ with μ = −3 + α. (10)

Full expressions for MAVAR (M = 2) are given in
[10][11]. Moreover, see Rutman [16] for a detailed overview
in case of unmodified variances. If P > 1, it is immediate to
generalize (10) to

∑
i

Aμiτ
μi . Therefore, if x(t) obeys (9), a

log-log plot of Modσ2
H,M (τ) looks ideally as a broken line

made of P segments, whose slopes μi yield the estimates
αi = 3+μi of the fractional noise terms that are dominant in
different ranges of τ .

The LD [1][6] behaves similarly. Actually, log-log plots of
MHVAR(τ) can be seen as particular LDs, since modified
Allan and Hadamard variances can be redefined in terms
of appropriate wavelets. In [1], LDs displaying two zones
with different average slopes are commented as revealing a
biscaling phenomenon.

B. Deterministic Signals

It is of utmost interest to understand the behaviour of
MAVAR and MHVAR also when x(t) includes deterministic
components, which are major examples of nonstationarity in
Internet traffic.

1) Offset and polynomial drift. Let x (t) =
M∑

j=0

cjt
j . By

substitution in (6), we get that MHVAR-M (based on the
M -th difference of input data) cancels data polynomial
drift of order < M , but reveals a ∼ tM drift, then
assuming trend ∼ t2M−2. Using wavelet formalism, this
is explained by the fact that the MHVAR-M wavelet has
M vanishing moments (cf. [6] Sec. III.B).

2) Periodic Signals. Let y(t) = x′(t) = Asin2πfmt, with
Sy(f) = (A2/2) · δ(f − fm). Then, by substitution in
the frequency-domain definition, we get (for n → ∞,

Authorized licensed use limited to: Politecnico di Milano. Downloaded on December 18, 2008 at 10:09 from IEEE Xplore.  Restrictions apply.



BREGNI AND JMODA: ACCURATE ESTIMATION OF THE HURST PARAMETER OF LONG-RANGE DEPENDENT TRAFFIC 1903

nτ0 = τ ):

Modσ2
H,M (τ) = A2 22(M−1)−1

M !

·
(

sin πfmτ

πfmτ

)4

(sin πfmτ)2(M−1) (11)

Hence, MAVAR and MHVAR ripple with period 2/fm.
(cf. [6] Sec. III.B.3)

3) Steps. Abrupt changes of the average bit rate in Internet
traffic may be due for instance to rerouting or link
capacity adjustment. Let x(t) = Au(t)(u(t) = 0 for
t < 0, u(t) = 1 for t ≥ 0). Since y(t) = x′(t) = Aδ(t),
we get

Modσ2
H,M (τ) =

〈
[A · hMH (M, n, t)]2

〉
= 0. (12)

Thus, steps in x(t) ideally do not affect MHVAR. In
practice, MHVAR is estimated on a finite interval T =
(N − 1)τ0 and thus depends on τ and T .

VI. USING MAVAR AND MHVAR FOR ESTIMATING THE

HURST PARAMETER

Let x(t) be a LRD process with PSD (3) and 1/2 ≤ H < 1.
Then, from (4) and (10), MAVAR and MHVAR-M follow
∼ τμ (ideally for n → ∞) with μ = 2H − 4. The following
procedure is suggested to estimate H :

1) compute MAVAR/MHVAR by (7), based on {xk}, for
integer values 1 ≤ n < N/(M +1) (we use a geometric
progression of ratio 1.1, i.e. 24 values/decade, for finest
rendering of trend);

2) by least-square linear regression, estimate the average
slope μ of MAVAR/MHVAR in a log-log plot for n > 4
and excluding also highest values of n (e.g., the last
decade), where confidence is lowest;

3) if −3 ≤ μ < −2 (i.e., 0 ≤ α < 1), get the estimate of
the Hurst parameter as

H = μ/2 + 2 (13)

Under the more general hypothesis of power-law PSD (9),
then up to P slopes μi can be identified (−3 ≤ μi < 2M −2)
to yield the estimates αi = 3+μi (0 ≤ α < 1+2M ) of the
P components of f−αi noise.

Some care should be exercised against non-stationary terms
in data analyzed (e.g., steps, slow trends), which cause
slope changes that may be erroneously ascribed to random
power-law noise. Moreover, the order M can be conveniently
adjusted to cancel polynomial drifts. Similarly, in [6] Sec.
III.B.4, it is suggested to increase the number of vanishing
moments until the H estimate converges to a stable value.

A key issue is to determine the confidence of these H
and αi estimates and whether they are unbiased. In [6] Sec.
III.C, this problem is studied for the H estimator based
on wavelet decomposition, under a number of simplifying
assumptions. This analysis can be adapted to the estimator
based on MAVAR or MHVAR, by defining them in terms of
appropriate wavelets. However, deriving exact expressions for
these confidence intervals is not immediate. Being analysis
cumbersome, we chose to evaluate empirically the accuracy
of the method proposed, by simulation on pseudorandom data
as done for example in [4].

VII. SIMULATION RESULTS

The accuracy of the MAVAR/MHVAR method was eval-
uated by extensive simulations and compared to that of the
wavelet LD technique [1][6]. All LD results were computed
running original scripts [35], using Daubechies wavelet with
Nv = 3 vanishing moments (LD-3).

A. Accuracy Evaluation

The MHVAR-3, MAVAR and LD-3 methods were applied
to LRD pseudo-random series {xk} of length N , generated
with one-sided PSD Sx(f) = hf−α(0 ≤ α < 1) for
assigned values of H = (1 + α)/2. The generation algorithm
is by Paxson [36]: a vector of random complex samples,
having amplitude equal to the square root of an exponentially-
distributed variable with mean Sx(fk) and phase uniformly
distributed in [0, 2π], is inversely Fourier-transformed to yield
the time-domain sequence {xk}. Also other synthesis algo-
rithms were essayed, but with no substantially different results
in comparing accuracy of H estimates.

First, 100 independent pseudo-random sequences {xk} of
length N = 131072, with mean mx = 0 and variance
σ2

x = 1, were generated for each of the 11 values {Hi}
= {0.50, 0.55, ..., 1.00}. On the resulting 1100 time series,
we applied the MHVAR-3, MAVAR and LD-3 methods,
getting three sets of estimates

{
Ĥi,j

}
, for i = 0, 1, . . . , 10

and j = 1, 2, . . . , 100. We then evaluated the accuracy of
these estimates, calculating the absolute estimation errors
Δi,j = Ĥi,j −Hi. The same test was repeated on other 1100
sequences of length N = 1024, to compare the methods on
short sequences too.

Fig. 2 compares the estimation errors {Δi,j} attained on
series of N = 131072 samples. For each value Hi, the mean
mΔi and standard deviation ±σΔi, out of 100 estimation
errors, are plotted. Both MAVAR and MHVAR-3 achieve
better confidence than LD-3, which also appears significantly
biased. Similarly, Fig. 3 compares the estimation errors {Δi,j}
on series of N = 1024 samples. Also here, both MAVAR and
MHVAR-3 achieve better confidence than LD-3, which seems
less efficient on shorter data series. Visual comparison of plots,
not shown for lack of space, justifies such better confidence
of estimates. Especially on short series, MAVAR/MHVAR log-
log plots are smoother and closer to the ideal linear trend than
LD.

B. Impact of Steps in LRD Input Data

We evaluated MAVAR, MHVAR-M and LD-3 on LRD data
including various steps (cf. Sec. V.B). Sequences of length
N = 1024, 131072 were generated as {xk} = {Auk−Q +
nk}(k = 1, . . . , N), where {uk−Q} is the sampled unit step
function u(t) delayed Q time units (1 < Q < N) and {nk} is
a pseudo-random LRD series, with mean mn = 0 and variance
σ2

n = 1, generated as before with PSD Sn(f) = hf−α for
α = 0.60 (H = 0.80). By varying extensively parameters Q
and A, we found that:

• the step impact on MHVAR-M is maximum for Q =
N/2 and negligible for Q → 1 and Q → N ;
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Fig. 2. Absolute estimation error of H attained by MAVAR, MHVAR-3
and LD-3 methods (N = 131072, mean and standard deviation out of 100
estimation errors).
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Fig. 3. Absolute estimation error of H attained by MAVAR, MHVAR-3
and LD-3 methods (N = 1024, mean and standard deviation out of 100
estimation errors).

• for M even, input steps affect MHVAR-M curves only
at the right end;

• for M odd, input steps shift MHVAR-M curves verti-
cally, with limited impact on slope ([37] Fig. 4);

• MHVAR-M is affected significantly if steps have size
at least on the order of σn; such big steps are evident
by visual inspection and can be removed before H
estimation;

• anyway, input steps affect MHVAR-M (M even) less
than LD-3.

Among many simulation results produced, Figs. 4 and 5
show MAVAR and LD-3 curves for N = 131072, varying
step size and delay as 0 ≤ A ≤ 2 and 0 < Q < N . Moreover,
MHVAR-M curves for M = 3, 4 were shown in Fig. 4 of
[37]. To compare MAVAR and LD graphs fairly, since LD
omits the last two octaves (j ≤ 14) [35], MAVAR curves in
Fig. 4 have been plotted for n ≤ 214.

C. Impact of the Difference Order M

We evaluated how the order M affects the H estimation
accuracy by MHVAR, on 100 independent pseudo-random
sequences {xk} for each of the 11 values Hi as in Sec. VII.A.
Fig. 6 plots, for 2 ≤ M ≤ 10, the mean of the 11 mean values
mΔi (dots) and of the 11 standard deviations σΔi (bars) for
N = 1024 (right) and N = 131072 (left). LD-3 results are
also plotted for comparison, although half out of scale.

Fig. 4. MAVAR computed on a pseudo-random LRD sequence {nk} (N =
131072, mn = 0, σn = 1, H = 0.80) with added step {Auk−Q}.
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Fig. 5. LD-3 computed on a pseudo-random LRD sequence {nk} (N =
131072, mn = 0, σn = 1, H = 0.80) with added step {Auk−Q}.

First, MAVAR and MHVAR-M estimates are not bi-
ased. Second, MHVAR-3 results have better confidence than
MAVAR for N = 131072: the mean of σΔi of MHVAR-
3 estimates is -22% than that of MAVAR, which in turn is
-14% than that of LD-3 (cf. Fig. 2). This confidence gain
is significant, since it is computed over 1100 independent
estimates. For N = 1024, the mean of σΔi of MHVAR-3
estimates is just -3% than that of MAVAR, which is -54%
than that of LD-3.

Conversely, increasing the order M > 4 does not im-
prove confidence further for N = 131072, whereas it even
worsens it for N = 1024. In general, the confidence is
not improved by increasing the MHVAR order indefinitely,
although HMH(M, f) becomes more selective (cf. Fig. 1). In
fact, the sharper is the filter transfer function, the longer is its
time-domain response, and thus the longer the data sequence
should be for achieving the same confidence. Analogous
considerations hold for the number of vanishing moments NV

in wavelet LD. As noted in [6], the larger NV is, the smaller
are bias and confidence intervals of H estimates. Nevertheless,
this improvement is counterbalanced by the increase of the
number of wavelet coefficients polluted by border effects due
to data finite length, resulting in a smaller number of usable
wavelet coefficients.

VIII. EXAMPLE OF APPLICATION TO A REAL IP TRAFFIC

TRACE

We applied the MHVAR-3 and LD-3 methods on a real
IP traffic series [bytes/s] measured on a trans-oceanic link
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Fig. 6. Average mean E[mΔi] and standard deviation E[σΔi](i =
0, . . . , 10) of the H estimation errors attained by the MHVAR-M method
(2 ≤ M ≤ 10), compared to LD 3 (average results on 100 pseudo-random
sequences {xk} for each of 11 values Hi).

Fig. 7. Logscale diagram (Nv = 3) [35] of a real IP traffic sequence
(bytes/time, MAWI Project [38], N = 61600, τ0 = 10 ms, T = 616 s).

(MAWI [38], N = 61600, τ0 = 10 ms, T = 616 s). No
nonstationary trends, e.g. steps, are evident.

Figs. 7 and 8 plot respectively LD-3 and MHVAR-3. We
notice that the LD-3 trend is more irregular (cf. Figs. 2 and 3),
whereas MHVAR exhibits two regular slopes, viz. μ1 = −2.89
and μ2 = −1.8. Thus, two simple power-law (9) components
are revealed by MHVAR: α1

∼= 0.11 (H ∼= 0.555), dominant
for 10 ms < τ < 2 s, and α2

∼= 1.2, dominant for 2 s <
τ < 20 s. Both estimates are in agreement with average slopes
observed on LD-3 (note that octave 8 corresponds to τ ∼= 2
s).

IX. CONCLUSIONS

In this paper, the Modified Allan and Hadamard Variances
have been proposed for estimating the Hurst parameter H or
the exponent α of traffic series with 1/fα power-law PSD
(α ≥ 0). While MAVAR is well known as frequency stability
measure, MHVAR has been given little attention so far. Some
other variances (e.g., total variances) were also studied, but
resulted less useful to the purpose of H and α estimation.

The H estimation accuracy of MAVAR and MHVAR-M
was evaluated on LRD pseudo-random sequences, generated
with assigned values of H , and compared to the Daubechies’
wavelet LD technique with 3 vanishing moments. Extensive
simulations showed that MAVAR and MHVAR-M achieve
significantly better confidence and are not biased in H es-
timation. The behaviour of MAVAR and MHVAR-M with
drifts, steps and periodic components in input data was also
investigated. Being based on data M th difference (M ≥ 2),

Fig. 8. Modified Hadamard Variance (M = 3, 24 points/decade) of a real
IP traffic sequence (bytes/time, MAWI Project [38], N = 61600, τ0 = 10
ms, T = 616 s).

they cancel ∼ tM−1 drifts. Moreover, they are quite robust
against steps, being affected less than LD-3.

Finally, MHVAR-3 was applied to a real IP traffic trace.
Compared to LD-3, MHVAR-3 gave a clearer spectral charac-
terization of the traffic series analyzed. Two power-law noise
components were identified (k1/f0.11 + k2/f1.2), revealing
two different scaling behaviours dominant on different obser-
vation intervals.

In conclusion, MAVAR and MHVAR-M may complement
usefully other well-established techniques (e.g. LD), due to
several advantages. Among them, we highlight in particular:

• high spectral resolution (Fig. 1);
• excellent accuracy in H and α estimation with negligible

bias (Figs. 2, 3 and 6);
• convergence to finite values for all types of 1/fα pro-

cesses (9) with α < 1 + 2M(α ∈ R);
• insensitivity to polynomial drifts of order ≤ M − 1 and

robustness against steps and periodic components;
• affordable computational complexity in all practical

cases, since MAVAR and LD have same complexity
O(N log N) if MAVAR is computed by recursive algo-
rithm for n = 2j , i.e. on octaves as LD;

• ease of computation for any value of τ = nτ0(n =
1, 2, ..., �N/(M + 1)	), which allows rendering the trend
to the finest detail (contrary to LD, which is computed
on octaves instead).
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