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Abstract ⎯ Business-to-Business and Business-to-Customer 
transactions in Internet require secure communication, especially 
for web applications. The Secure Socket Layer (SSL) protocol is 
one of the most viable solutions to provide the required level of 
confidentiality, message integrity and endpoint authentication. 
The two main alternatives for providing SSL security are the end-
to-end and the accelerated solutions, which enable different cost-
performance tradeoffs, where performance is intended as the 
overall delay that the customer experiences to complete the 
transaction. The accelerated solution is enabled by special devices 
(SSL acceleration cards) placed in network nodes. In this paper, 
we propose an optimization algorithm, which designs the ICT in-
frastructure minimizing the total cost, given a target perform-
ance objective defined as the end-to-end delay for the completion 
of the distributed application tasks. We apply this method to 
evaluate the efficiency of SSL acceleration versus end-to-end SSL, 
in order to determine in what conditions SSL acceleration is con-
venient. Our algorithm performs joint optimization of computing 
and communication resources, whilst in literature hardware and 
network are typically optimized separately. 

Index Terms ⎯ Communication system security, information 
systems, information technology, optimization methods. 

I. INTRODUCTION 
he security of Internet traffic can be provided using vari-
ous protocols: Secure Socket Layer (SSL) [1], Transport 

layer Security (TLS) [2] and, at the network layer, Internet 
Protocol Security (IPSec) [3]. All these protocols and mecha-
nisms provide secure communications between applications 
that run on public domains such as Internet. In this paper, we 
focus on SSL, whose security services are used across the 
world by distributed applications accessible by a web inter-
face. SSL is a protocol built on top of TCP. The application 
layer uses SSL features to obtain confidentiality, message in-
tegrity and endpoint authentication [4]. 

Researchers have studied the performance of SSL, usually 
measured as the overhead of secure processing in web servers, 
as studied for example in [5]. Other studies focus on crypto-
graphic algorithms [6] and propose optimizations for acceler-
ating crypto operations. In [7], SSL is profiled in detail and the 
time spent by processors for SSL elaboration is provided, for 
all the phases of SSL negotiation. 

Since SSL consumes resources of both clients and servers, 
cost and performance are critical issues of SSL deployment as, 
in order to guarantee the target end-to-end performance levels 
at the application layer, additional resources must be supplied 
to carry out the SSL-related tasks. This, in turn, calls for addi-
tional investments costs. Moreover, there are several options 

on how to implement SSL security services: currently, a ra-
tional, general and quantitative method does not exist. 

In this paper, we provide a cost-performance oriented plan-
ning algorithm, carried out at the system level, of SSL-secured 
infrastructures. Our algorithm is based on a detailed mathe-
matical model of both end-to-end performance and costs of the 
Information and Communication Technology (ICT) infrastruc-
ture for the provision of SSL-secured communications over 
both public domains such as Internet or private domains such 
as the virtual private network of a company.  

Two main options are available for the deployment of SSL. 
First, SSL secure connection can be provided in an end-to-end 
fashion, from the client and the remote application server. Al-
ternatively, SSL can be accelerated by a specific device, the 
SSL accelerator (see for example [8][9]), that terminates SSL 
connections on behalf of the client. 

Our method for the selection of the optimal strategy is based 
on a model of the overall technological infrastructure, com-
prising hardware and network components [11], which is used 
to carry out an optimal design of infrastructures by minimizing 
costs required to satisfy given performance requirements of 
both computing and communication  ([10]─[13]).  

In the literature, the design of infrastructures is usually car-
ried out by splitting the problem into two distinct optimiza-
tions of hardware and network. The first optimization problem 
is how to distribute the overall computing load of a distributed 
system onto multiple machines, in order to minimize hardware 
costs ([12][14][15]). The second problem is where to locate 
machines that need to exchange information in order to mini-
mize network costs ([16]─[18]). These two problems have 
been studied separately in the literature. However, design deci-
sions on both alternatives are strongly interrelated. 

Overall, we consider a multi-site scenario and address the 
following design choices: a) allocation of server farms to sites; 
b) allocation of server applications on shared server farms; c) 
allocation of SSL acceleration devices (called SSL accelera-
tion cards, or simply cards, in the following sections) to net-
work routers; d) dimensioning all devices. 

II. SSL ACCELERATION 
A. The Secure Socket Layer (SSL) Protocol 

In this paper, we focus on HTTP and HTTPS applications. 
HTTPS is the HTTP protocol used on top of the SSL protocol. 
SSL communications between client and server are supported 
by SSL sessions, i.e. relations between client and server.  

T 



The Handshake Protocol is responsible for session creation: 
it negotiates cryptographic parameters to be shared by various 
connections, avoiding frequent renegotiations. It allows clients 
and servers to mutually authenticate, to negotiate ciphering 
and MAC algorithms and to securely exchange the session key 
for the SSL Record Protocol.  

The SSL Record Protocol provides privacy and integrity 
services. It fragments input messages into blocks, compresses 
each block, applies a MAC (Message Authentication Code) 
code, and then encrypts the resulting block by using a private 
key exchanged by the Handshake Protocol. It adds a header to 
the message and sends it via TCP. Received messages are de-
crypted, verified, uncompressed, assembled back and then sent 
to the application layer. 

In [19], the SSL handshake execution time has been meas-
ured on a 1.4 GHz Xeon host (with SPECint2000 [20] bench-
mark B = 516). Reported values are 2 ms for a resumed SSL 
handshake and 175 ms for a full SSL handshake. We note that 
the Microsoft Internet Explorer web browser performs a SSL 
session renegotiation, which causes a new full SSL handshake 
[21] every 120 s. The CPU utilization of a web server, proc-
essing 1 kB web pages transmitted over a secure SSL channel 
(HTTPS), has been measured in [7]; the CPU time expenditure 
has been reported broken into page generation (7.6%), page 
encryption (2.4%) and key exchange/SSL handshake (90%) 
phases. It has been observed that the page generation and page 
encryption times are proportional to page sizes. 

B. SSL Acceleration Cards and Content Switches 
SSL operations are typically executed by a web server proc-

ess. While a HTTP server listens for new connections on port 
80, a SSL server listens for connections on port 443. The SSL 
process uses web servers processing power, subtracting re-
sources to the other processes running on the servers and con-
sequently increasing response times. 

The use of SSL adapter cards allows mitigating the heavy 
SSL processing load. SSL adapter cards are placed inside serv-
ers and plugged in a motherboard slot. Web server still run a 
SSL process, but a set of functions is delegated to the adapter 
card, thus decreasing server load. These cards supports up to 
1000 new connections per second [22]. 

In order to lower the web server load, SSL can be executed 
by content switches, used to balance traffic intelligently 
among servers in data centres, based on content availability 
and server load.  

 
Fig. 1: Content Switch with integrated SSL accelerator. 

 
Fig. 2: General model of the IT infrastructure. 

The configuration in Fig. 1 centralizes SSL functions in a 
single device. The need of processing many connections re-
quires SSL accelerators in the content switch [8]. The content 
switch uses SSL accelerators to decrypt SSL traffic from cli-
ents to servers and encrypt it on the opposite way. A content 
switch should also be able to balance the load among all serv-
ers in the server farm, tracing SSL sessions. 

III. THE OPTIMIZATION PROBLEM 
We consider the general model of IT infrastructure shown in 

Fig. 2. Users and server farms are located in sites defined as 
geographically separated locations accommodating either us-
ers, server farms, or both. Within a site, devices are connected 
through a high-speed local area network (LAN), which has 
greater performance and smaller cost than a geographic net-
work connecting sites. Thus, LANs are not considered for 
cost-performance optimization. Sites are connected by a geo-
graphic network made of links and routers. Routers may or 
may not be equipped with a card performing SSL acceleration. 

A. Technology Requirements 
This section specifies the formalization of requirements for 

a reference organization with a set of sites S. 
1) Sites. A site si ∈ S is defined as a set of technology re-

sources connected by a Local Area Network (LAN). For each 
site pair (si, sj), the distance is dist(si, sj).  

2) SSL application. An SSL application ai
SSL ∈ ASSL is an 

application providing SSL cryptography services. It is charac-
terized by CPU time timeCPU(ai

SSL) required to encrypt a mes-
sage on a reference server of type ref(ai

SSL) ∈ ST, disk time 
timeDISK(ai

SSL), RAM space spaceRAM(ai
SSL), and disk space 

spaceDISK(ai
SSL). 

3) Server application. A server application (or application 
process) ai ∈ A is characterized by CPU time timeCPU(ai), disk 
time timeDISK(ai), RAM space spaceRAM(ai), disk space 
spaceDISK(ai), number of bits of a request req(ai), number of 
bits of a response resp(ai), SSL application ssl(ai) ∈ ASSL serv-
ing the application ai. 

4) User group. A user group ui ∈ U is a set of |ui| users with 
common computing requirements, i.e., using the same set of 



applications. Each user group is characterized by the set of 
server applications used, as specified by the matrix {γij} where 
γij = 1 if the application ai ∈ A is used by ui else γij = 0; the site 
site(ui) ∈ S where the group is located, the response time re-
quirement delayij and the frequency of requests msg(ui, aj) of 
user group ui for the application aj. 

B. Hardware Resources 
The computing requirements of the organization can be sat-

isfied by the hardware resources defined in the following.  
1) Link type. A link type ltk ∈ LT is characterized by service 

cost cost(ltk), minimum and maximum distances distMin(ltk) 
and distMin(ltk), and capacity cap(ltk). 

2) Router type. A router type rtk ∈ RT is characterized by 
acquisition cost cost(rtk), service rate BPS(rtk), maximum 
backplane service rate B(rtk), classifier coefficient KC(rtk), and 
routing coefficient KR(rtk). 

3) Server type. Each server type stk ∈ ST is characterized by 
acquisition cost cost(stk),  RAM size ram(stk), disk space 
disk(stk), CPU performance benchmark benchCPU(stk) (i.e., the 
ratio of the execution time of a reference application on a ref-
erence CPU to the execution time of the same application on 
stk’s CPU) and disk performance benchmark benchDISK(stk). 

4) SSL acceleration card type. A card type ctk ∈ CT is char-
acterized by acquisition cost cost(ctk) and CPU performance 
benchmark benchCPU(ctk). 

5) Server farm. A server farm sfi ∈ SF is a set of |sfi| servers 
of the same type type(sfi) ∈ ST. The maximum number of 
servers allowed in server farms is referred to as ϕ. 

6) Router. A router ri ∈ R is an instance of a router type 
type(ri) ∈ RT assigned to site si.  

7) Link. A link lij ∈ L is an instance of a link type 
type(lij) ∈ LT assigned to a site pair (si, sj). 

8) SSL acceleration card. A card ci ∈ C is an instance of a 
card type type(ci) ∈ CT assigned to router ci. Note that a router 
may or may not be assigned a card. 

IV. THE OPTIMIZATION MODEL 
A. Decision Variables 

Optimization alternatives are represented by the following 
decision variables. 

1) Allocation of applications to server farms: xij = 1 if the 
application ai ∈ A is placed on server farm sfj else xij = 0. 

2) Allocation of server farms to sites: yjk = 1 if the server 
farm sfj is placed on site sk else yjk = 0. 

3) Allocation of cards: wlk = 1 if card cl is installed on router 
rk else wlk = 0.  

4) Allocation of SSL applications to farms: zpj = 1 if the SSL 
application ap ∈ ASSL is placed on server farm sfj else zpj = 0. 

B. Response Time 
For each such pair (ui, aj) that γij = 1, we must identify the 

direct and reverse routing paths from the site of user group ui, 
site(ui) ∈ S, to the site of the server farm where application aj 
is allocated. These paths can be identified by means of any 
shortest path algorithm. Our tool implements the Dijkstra 

shortest path algorithm using a metric of 1 for each link. 
The response time depends on the average load of the de-

vices crossed by the requests sent by user group ui to applica-
tion aj along direct and reverse paths. The devices along direct 
and reverse paths are represented by way of ordered lists 

( )0, , [ ]req req req
ij ij ijd i d d i L R C SF∀ ∈ ∈ ∪ ∪ ∪⎡ ⎤⎣ ⎦  

( )0, , [ ]res res res
ij ij ijd i d d i L R C∀ ∈ ∈ ∪ ∪⎡ ⎤⎣ ⎦  (1). 

where req and res indicate the direct and reverse path, respec-
tively. Each list includes all devices crossed along the corre-
sponding path (links, routers, cards, and server farms). 

Let rtimeij be the response time experienced by the request 
from user group ui to application aj, including the delay along 
both the direct and reverse paths. The response time along the 
direct path is supposed to include the actual service time of the 
request. Response time is calculated as 

 ( ) ( )1 1[ ] [ ]
= =

= +∑ ∑
req res
ij ijd dreq res

ij ij ij ij ijn nrtime rtime d n rtime d n (2). 

Application requests hit all devices along the direct and re-
verse paths with the same frequency λij = |ui|⋅msg(ui, aj). 

The SSL acceleration application is performed by the card 
in the router of the destination site of the request. SSL accel-
eration for a given request cannot be executed in sites different 
from the destination of the request, as the request would pro-
ceed unencrypted to the destination site. If the router placed in 
the destination server farm site has not a card, then the server 
farm must execute the SSL application. 

The response time for devices (viz. links, routers, cards, and 
server farms) is computed according to device parameters and 
the amount of requests crossing single devices. The response 
time for each request is computed as the sum of the average 
time spent by each request (or response) in a set of multiple 
class M/M/1 queues and the corresponding service times (the 
propagation time is also considered in link devices).  

C. Objective function 
The objective function to be minimized is the total cost, TC, 

of the technology resources selected to satisfy requirements 
over a time horizon indicated as years. 
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D. Constraints 
Thirteen constraints have been identified in our model: 

1) each application must be allocated on one server farm; 
2) each server farm must be allocated on one site; 



 
Fig. 3: Flow diagram of the cost minimization algorithm. 

3) server farms only on sites allowed to host server farms; 
4) each router must be assigned at most one card; 
5) all user groups must be served with a response time lower 

than their application delay requirements; 
6) only link types that meet distance constraints;  
7, 8) only server types that meet RAM and disk space con-

straints; 
9) on the maximum number of servers allowed in server farms; 
10, 11, 12, 13) on the maximum load on server farms, cards, 

routers and links (100%). 

V. COST MINIMIZATION ALGORITHM 
The cost minimization algorithm, outlined in Fig. 3, aims at 

identifying the minimum-cost solution that satisfies technol-
ogy requirements with corresponding technology resources. 
The algorithm is based on the tabu-search (TS) approach [23]. 

Two initial solutions are identified first: a fully centralized 
solution allocating all applications on one server farm and a 
fully decentralized solution allocating each application on a 
separate server farm.  They both meet constraints 1, 2, 3, 4.  

Then, the device-sizing phase identifies a set of technology 
resources meeting all requirements 1─13, including applica-
tion delays, and calculates the corresponding total cost TC. 
Tabu moves are made to reduce TC until either the cost of so-
lutions reaches a steady state for a predefined number of 
moves or a maximum number of moves is reached. The device 
sizing phase is repeated after each tabu move. The final solu-
tion is selected as the one with lowest cost among those ob-
tained from the centralized and decentralized initial solutions.  

In our tabu-search implementation, the neighbourhood of a 
solution is explored by executing four types of moves: appli-
cation displacement, server farm displacement, card insertion, 
and card removal. An application displacement removes a 
server application from a server farm and allocates it on a dif-
ferent server farm. A server farm displacement removes a 
server farm from a site and allocates it on a different site. A 
card insertion adds a card to a router, while a card removal 
removes a card from a router. Tabu moves must satisfy con-
straints 1, 2, 3, and 4. The execution of a move changes the 
configuration of decision variables x, y, w. This configuration 
is an input to the device sizing phase of the cost minimization 
algorithm described in Fig. 3. 

The device sizing phase aims at identifying the minimum-
cost set of technology resources satisfying requirements within 
the current configuration of decision variables x, y, w. Sizing 
is performed in two steps: a first sizing followed by a se-
quence of upgrades and downgrades. 

The first sizing assigns to each device the minimum-cost 
type that satisfies requirements according to commonly used 
rules of thumb. According to these rules of thumb, device 
types are chosen in such a way that the maximum load of all 
queues is lower than 60% [24].  

Given a configuration of decision variables x, y, w and the 
type() assignment for each device – as computed in the first 
sizing step – the rtimeij for each (ui, aj) pair can be determined. 
A configuration score is then computed to measure the dis-
tance between actual and maximum response time: 

 ({ ) }, | 1 max , 0γ =
= −∑

ij
ij iji jscore rtime delay  (4). 

If score = 0, the current configuration meets delay con-
straints, else a device upgrade is needed. If score > 0, pairs 
with a response time higher than maximum delay are ad-
dressed, by considering for upgrade the devices along corre-
sponding request paths. An upgrade replaces the current type 
of a device with the lowest-cost type that has a cost greater 
than that of the current type. Note that a more costly server 
farm type can be obtained, either by using a different server 
type or by changing the total number of servers in the farm.  

The algorithm performs a series of upgrades, each of them 
lowering the configuration score, until score = 0 is reached. 
Upgrades that deliver a higher score reduction are performed 
first. All intermediate configurations are feasible since they 
also comply with constraints 1─4.  

When a solution with score = 0 is found, the configuration 
space is explored by means of a series of downgrades and up-
grades in order to identify the minimum-cost set of devices. 
Device downgrades bring to solutions with lower total cost. A 
series of downgrades and series of upgrades are iteratively 
performed until a given maximum number of configuration 
changes is reached. The best solution found with all upgrades 
and downgrades with score = 0 is selected as the output of the 
device sizing phase. 

VI. EMPIRICAL VERIFICATION 
Empirical tests have been carried out, using a prototype tool 

we developed implementing the cost minimization algorithm. 
This tool includes a database of commercial technological re-
sources and related cost data.  

Server types have been surveyed from the web sites of four 
main vendors: Dell, HP, IBM, and ION Computers. Perform-
ance data have been collected for 460 servers. Computing ca-
pacity is benchmarked by means of SpecInt2000 [20]. A server 
farm is supposed to be composed by at most ϕ = 30 servers. 
Thus, our tool can choose among 13800 different server farms. 

The database of routers is based on Cisco products. Two 
types of routers are considered, with cost and performance 
data provided by Cisco.  

An SSL accelerator card type is available, with parameters 
set to make it able to perform up to 1000 handshakes/s, i.e. a 



common value for market available devices [22]. The cost of 
the card has been initially considered equal to 50,000 USD.  

Cost data of links have been collected from the official pric-
ing documents of digital leased lines in Italy [25]. 

In the following, we provide empirical evidence of the cost 
savings granted by cards supporting the SSL acceleration ser-
vice. Analysis has been performed by comparing the costs of 
optimization solutions obtained with and without cards. Costs 
have been minimized over a three-year period.  

Analysis focuses on a scenario where server farms are 
forced to be placed in one site called Application Service Pro-
vider (ASP), as shown in Fig. 4. The applications required by 
the user are HTTP (application a1) or HTTPS (application a2) 
page generation requests. The server applications compute and 
send e-commerce web pages with size 36 kB. Application pa-
rameters of server and SSL applications have been computed 
by using the empirical data presented in Section II.A applied 
to this particular scenario.  

A total number of 6,000 active users have been considered. 
Each of them has an active web session and send a page re-
quest every 50 s. Half of the users require a secure connection 
by SSL protocol. Fig. 4 shows the topology of the considered 
scenario and the corresponding user groups. Two POP nodes 
are connected to a core node and two user sites are connected 
to each pop node. The distance between POP and user sites is 
25 km, while the distance between Core and POP sites is 
50 km. One user group is assigned to each user site. All server 
farms must be placed in the ASP site (serv(s8) = 1). 

The cost minimization algorithm is applied with varying de-
lay constraints. In each simulation, the same delayij value is 
used for all user groups and applications. Two cases, with or 
without the SSL acceleration cards, have been compared. 

In Fig. 5, the total cost TC is plotted as a function of the re-
quired average end-to-end delay. Costs are significantly higher 
when delay requirements are tighter, about 30% higher as the 
maximum response time decreases from 0.40 s to 0.20 s. 

From the results reported in Fig. 5, we notice that SSL ac-
celeration is convenient only if the delay requirement is below 
0.4 s. Cost savings allowed by solutions with SSL acceleration 
cards, compared to solutions without cards, are higher when 
the maximum allowed delay is lower: for instance, they are 
equivalent to 25% with delay 0.14 s and to 2% with delay 
0.34 s. An extensive analysis for a large set of different system 
parameters has shown that, in general, SSL acceleration is 
convenient with a strict end-to-end delay performance. 

Furthermore, we analyzed the maximum cost/performance 
ratio of SSL acceleration cards, which makes convenient 
adopting SSL acceleration. In Fig. 6, the maximum cost mak-
ing advantageous employing SSL acceleration is plotted as a 
function of the CPU benchmark of the SSL acceleration card. 
The relative benchmark of cards is defined as the ratio of the 
benchmark of cards used in the optimization to the benchmark 
of a standard SSL accelerator, used as a reference for our 
study, able to perform up to 1000 handshakes/s. In Fig. 6, the 
curves refer to delay targets equal to 0.3 s, 0.5 s and 0.7 s, and 
to 6,000 or 3,000 users (in the latter case, the number of users 
in the user groups has been halved). 

 
 

Fig. 4: Topology of the test scenario. 
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Fig. 5: Total cost in the scenario vs. the required average end-to-end delay. 
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Fig. 6: Cost vs. CPU benchmark trade-off of SSL cards. 

The graph in Fig. 6 shows that the cost/benchmark curves 
exhibit a sharp knee shape or even have no points below a cer-
tain benchmark value. This behaviour corresponds to the need 
of a minimum SSL accelerator CPU benchmark to meet the 
delay target. When the minimum benchmark value is safely 
above the required value, the maximum card cost to obtain an 
economically convenient SSL acceleration is nearly constant.  

For example, with 6,000 users and delay target 0.3 s, we 
need a benchmark of roughly 7,200 (i.e., 0.08 multiplied by 
the reference SSL accelerator benchmark equal to 90,300), be-
ing willing to pay for it at most about 406,300$. On the other 
hand, with higher delay target 0.7 s, we will be willing to pay 



for it at most about 37,500$. We are interested in higher 
benchmarks only if we would like to have a scalable system, 
that is, for example, if we forecast a significant growth of the 
number of users in the near future. 

The Fig. 6 shows that there is an ample space for cost re-
duction. With a relative benchmark equal to 1, we could obtain 
cost saving even with a cost more than 40 times greater than 
the actual cost of cards. Obviously, the maximum relative cost 
of cards enabling the reduction of total cost decreases as the 
card benchmark diminishes. However, even for relatively 
small benchmarks, cards are still economically advantageous. 

VII. CONCLUSIONS 
In this work, we have studied the problem of the joint cost-

performance optimization of end-to-end SSL-based services. 
We have carried out this complex task by customizing a novel 
methodology for the joint optimization of hardware and com-
munication costs, given end-to-end performance constraints. 

The concrete implementation of our methodology consists 
in an optimization tool implementing a tabu-search mecha-
nism based on a precise and complex mathematical model of 
the system resources, architecture, configuration and costs. 
Our optimization tool sizes all the system resources (including 
servers and communication links) in order to have a system 
complying with the end-to-end delay requirements with mini-
mum cost. 

Then, we applied our optimization tool in more complex 
scenarios and system topologies, in order to check whether 
SSL acceleration carried out by special dedicated devices, cur-
rently available on the market, can be more convenient than 
end-to-end SSL services. We found a trade-off between in-
creasing costs for servers in the end-to-end solution (server 
load is increased by SSL-related tasks) and increasing costs 
for SSL accelerators (smaller servers can be chosen as SSL-
related tasks are performed by accelerators). 

We examined scenarios with multiple sites and thousands of 
users. We found that SSL acceleration is economically conven-
ient only if the end-to-end target delay requirement is strict. 
On the contrary, if the end-to-end application-layer delay that 
the user can tolerate is large, SSL acceleration is not conven-
ient. More in detail, we have found that with rather strict end-
to-end delay bounds (i.e., on the order of 100-200 ms), the 
smallest-cost system constructed with SSL accelerators exhib-
its a cost advantage on the order of 15%-20%, compared to the 
same system designed with end-to-end SSL, i.e. without ac-
celerators.  

We also investigated the cost-performance trade-off of SSL 
accelerators and reported the conditions under which they are 
convenient. 
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