
Cost-Performance Optimization
of SSL-Based Secure Distributed Infrastructures

Stefano Bregni*, Senior Member, IEEE, Paolo Giacomazzi, Alessandro Poli

Politecnico di Milano, Dept. of Electronics and Information, Piazza Leonardo Da Vinci 32, 20133 Milano, ITALY
Tel.: +39-02-2399.3503 – Fax: +39-02-2399.3413 – E-mail: {bregni, giacomaz, poli}@elet.polimi.it

Abstract ⎯ Business-to-Business and Business-to-Customer
transactions in Internet require secure communication, especially
for web applications. The Secure Socket Layer (SSL) protocol is
one of the most viable solutions to provide the required level of
confidentiality, message integrity and endpoint authentication.
The two main alternatives for providing SSL security are the end-
to-end and the accelerated solutions, which enable different cost-
performance tradeoffs, where performance is intended as the
overall delay that the customer experiences to complete the
transaction. The accelerated solution is enabled by special devices
(SSL acceleration cards) placed in network nodes. In this paper,
we propose an optimization algorithm, which designs the ICT in-
frastructure minimizing the total cost, given a target perform-
ance objective defined as the end-to-end delay for the completion
of the distributed application tasks. We apply this method to
evaluate the efficiency of SSL acceleration versus end-to-end SSL,
in order to determine in what conditions SSL acceleration is con-
venient. Our algorithm performs joint optimization of computing
and communication resources, whilst in literature hardware and
network are typically optimized separately.

Index Terms ⎯ Communication system security, information
systems, information technology, optimization methods.

I. INTRODUCTION
he security of Internet traffic can be provided using vari-
ous protocols: Secure Socket Layer (SSL) [1], Transport

layer Security (TLS) [2] and, at the network layer, Internet
Protocol Security (IPSec) [3]. All these protocols and mecha-
nisms provide secure communications between applications
that run on public domains such as Internet. In this paper, we
focus on SSL, whose security services are used across the
world by distributed applications accessible by a web inter-
face. SSL is a protocol built on top of TCP. The application
layer uses SSL features to obtain confidentiality, message in-
tegrity and endpoint authentication [4].

Researchers have studied the performance of SSL, usually
measured as the overhead of secure processing in web servers,
as studied for example in [5]. Other studies focus on crypto-
graphic algorithms [6] and propose optimizations for acceler-
ating crypto operations. In [7], SSL is profiled in detail and the
time spent by processors for SSL elaboration is provided, for
all the phases of SSL negotiation.

Since SSL consumes resources of both clients and servers,
cost and performance are critical issues of SSL deployment as,
in order to guarantee the target end-to-end performance levels
at the application layer, additional resources must be supplied
to carry out the SSL-related tasks. This, in turn, calls for addi-
tional investments costs. Moreover, there are several options

on how to implement SSL security services: currently, a ra-
tional, general and quantitative method does not exist.

In this paper, we provide a cost-performance oriented plan-
ning algorithm, carried out at the system level, of SSL-secured
infrastructures. Our algorithm is based on a detailed mathe-
matical model of both end-to-end performance and costs of the
Information and Communication Technology (ICT) infrastruc-
ture for the provision of SSL-secured communications over
both public domains such as Internet or private domains such
as the virtual private network of a company.

Two main options are available for the deployment of SSL.
First, SSL secure connection can be provided in an end-to-end
fashion, from the client and the remote application server. Al-
ternatively, SSL can be accelerated by a specific device, the
SSL accelerator (see for example [8][9]), that terminates SSL
connections on behalf of the client.

Our method for the selection of the optimal strategy is based
on a model of the overall technological infrastructure, com-
prising hardware and network components [11], which is used
to carry out an optimal design of infrastructures by minimizing
costs required to satisfy given performance requirements of
both computing and communication ([10]─[13]).

In the literature, the design of infrastructures is usually car-
ried out by splitting the problem into two distinct optimiza-
tions of hardware and network. The first optimization problem
is how to distribute the overall computing load of a distributed
system onto multiple machines, in order to minimize hardware
costs ([12][14][15]). The second problem is where to locate
machines that need to exchange information in order to mini-
mize network costs ([16]─[18]). These two problems have
been studied separately in the literature. However, design deci-
sions on both alternatives are strongly interrelated.

Overall, we consider a multi-site scenario and address the
following design choices: a) allocation of server farms to sites;
b) allocation of server applications on shared server farms; c)
allocation of SSL acceleration devices (called SSL accelera-
tion cards, or simply cards, in the following sections) to net-
work routers; d) dimensioning all devices.

II. SSL ACCELERATION
A. The Secure Socket Layer (SSL) Protocol

In this paper, we focus on HTTP and HTTPS applications.
HTTPS is the HTTP protocol used on top of the SSL protocol.
SSL communications between client and server are supported
by SSL sessions, i.e. relations between client and server.

T

The Handshake Protocol is responsible for session creation:
it negotiates cryptographic parameters to be shared by various
connections, avoiding frequent renegotiations. It allows clients
and servers to mutually authenticate, to negotiate ciphering
and MAC algorithms and to securely exchange the session key
for the SSL Record Protocol.

The SSL Record Protocol provides privacy and integrity
services. It fragments input messages into blocks, compresses
each block, applies a MAC (Message Authentication Code)
code, and then encrypts the resulting block by using a private
key exchanged by the Handshake Protocol. It adds a header to
the message and sends it via TCP. Received messages are de-
crypted, verified, uncompressed, assembled back and then sent
to the application layer.

In [19], the SSL handshake execution time has been meas-
ured on a 1.4 GHz Xeon host (with SPECint2000 [20] bench-
mark B = 516). Reported values are 2 ms for a resumed SSL
handshake and 175 ms for a full SSL handshake. We note that
the Microsoft Internet Explorer web browser performs a SSL
session renegotiation, which causes a new full SSL handshake
[21] every 120 s. The CPU utilization of a web server, proc-
essing 1 kB web pages transmitted over a secure SSL channel
(HTTPS), has been measured in [7]; the CPU time expenditure
has been reported broken into page generation (7.6%), page
encryption (2.4%) and key exchange/SSL handshake (90%)
phases. It has been observed that the page generation and page
encryption times are proportional to page sizes.

B. SSL Acceleration Cards and Content Switches
SSL operations are typically executed by a web server proc-

ess. While a HTTP server listens for new connections on port
80, a SSL server listens for connections on port 443. The SSL
process uses web servers processing power, subtracting re-
sources to the other processes running on the servers and con-
sequently increasing response times.

The use of SSL adapter cards allows mitigating the heavy
SSL processing load. SSL adapter cards are placed inside serv-
ers and plugged in a motherboard slot. Web server still run a
SSL process, but a set of functions is delegated to the adapter
card, thus decreasing server load. These cards supports up to
1000 new connections per second [22].

In order to lower the web server load, SSL can be executed
by content switches, used to balance traffic intelligently
among servers in data centres, based on content availability
and server load.

Fig. 1: Content Switch with integrated SSL accelerator.

Fig. 2: General model of the IT infrastructure.

The configuration in Fig. 1 centralizes SSL functions in a
single device. The need of processing many connections re-
quires SSL accelerators in the content switch [8]. The content
switch uses SSL accelerators to decrypt SSL traffic from cli-
ents to servers and encrypt it on the opposite way. A content
switch should also be able to balance the load among all serv-
ers in the server farm, tracing SSL sessions.

III. THE OPTIMIZATION PROBLEM
We consider the general model of IT infrastructure shown in

Fig. 2. Users and server farms are located in sites defined as
geographically separated locations accommodating either us-
ers, server farms, or both. Within a site, devices are connected
through a high-speed local area network (LAN), which has
greater performance and smaller cost than a geographic net-
work connecting sites. Thus, LANs are not considered for
cost-performance optimization. Sites are connected by a geo-
graphic network made of links and routers. Routers may or
may not be equipped with a card performing SSL acceleration.

A. Technology Requirements
This section specifies the formalization of requirements for

a reference organization with a set of sites S.
1) Sites. A site si ∈ S is defined as a set of technology re-

sources connected by a Local Area Network (LAN). For each
site pair (si, sj), the distance is dist(si, sj).

2) SSL application. An SSL application ai
SSL ∈ ASSL is an

application providing SSL cryptography services. It is charac-
terized by CPU time timeCPU(ai

SSL) required to encrypt a mes-
sage on a reference server of type ref(ai

SSL) ∈ ST, disk time
timeDISK(ai

SSL), RAM space spaceRAM(ai
SSL), and disk space

spaceDISK(ai
SSL).

3) Server application. A server application (or application
process) ai ∈ A is characterized by CPU time timeCPU(ai), disk
time timeDISK(ai), RAM space spaceRAM(ai), disk space
spaceDISK(ai), number of bits of a request req(ai), number of
bits of a response resp(ai), SSL application ssl(ai) ∈ ASSL serv-
ing the application ai.

4) User group. A user group ui ∈ U is a set of |ui| users with
common computing requirements, i.e., using the same set of

applications. Each user group is characterized by the set of
server applications used, as specified by the matrix {γij} where
γij = 1 if the application ai ∈ A is used by ui else γij = 0; the site
site(ui) ∈ S where the group is located, the response time re-
quirement delayij and the frequency of requests msg(ui, aj) of
user group ui for the application aj.

B. Hardware Resources
The computing requirements of the organization can be sat-

isfied by the hardware resources defined in the following.
1) Link type. A link type ltk ∈ LT is characterized by service

cost cost(ltk), minimum and maximum distances distMin(ltk)
and distMin(ltk), and capacity cap(ltk).

2) Router type. A router type rtk ∈ RT is characterized by
acquisition cost cost(rtk), service rate BPS(rtk), maximum
backplane service rate B(rtk), classifier coefficient KC(rtk), and
routing coefficient KR(rtk).

3) Server type. Each server type stk ∈ ST is characterized by
acquisition cost cost(stk), RAM size ram(stk), disk space
disk(stk), CPU performance benchmark benchCPU(stk) (i.e., the
ratio of the execution time of a reference application on a ref-
erence CPU to the execution time of the same application on
stk’s CPU) and disk performance benchmark benchDISK(stk).

4) SSL acceleration card type. A card type ctk ∈ CT is char-
acterized by acquisition cost cost(ctk) and CPU performance
benchmark benchCPU(ctk).

5) Server farm. A server farm sfi ∈ SF is a set of |sfi| servers
of the same type type(sfi) ∈ ST. The maximum number of
servers allowed in server farms is referred to as ϕ.

6) Router. A router ri ∈ R is an instance of a router type
type(ri) ∈ RT assigned to site si.

7) Link. A link lij ∈ L is an instance of a link type
type(lij) ∈ LT assigned to a site pair (si, sj).

8) SSL acceleration card. A card ci ∈ C is an instance of a
card type type(ci) ∈ CT assigned to router ci. Note that a router
may or may not be assigned a card.

IV. THE OPTIMIZATION MODEL
A. Decision Variables

Optimization alternatives are represented by the following
decision variables.

1) Allocation of applications to server farms: xij = 1 if the
application ai ∈ A is placed on server farm sfj else xij = 0.

2) Allocation of server farms to sites: yjk = 1 if the server
farm sfj is placed on site sk else yjk = 0.

3) Allocation of cards: wlk = 1 if card cl is installed on router
rk else wlk = 0.

4) Allocation of SSL applications to farms: zpj = 1 if the SSL
application ap ∈ ASSL is placed on server farm sfj else zpj = 0.

B. Response Time
For each such pair (ui, aj) that γij = 1, we must identify the

direct and reverse routing paths from the site of user group ui,
site(ui) ∈ S, to the site of the server farm where application aj
is allocated. These paths can be identified by means of any
shortest path algorithm. Our tool implements the Dijkstra

shortest path algorithm using a metric of 1 for each link.
The response time depends on the average load of the de-

vices crossed by the requests sent by user group ui to applica-
tion aj along direct and reverse paths. The devices along direct
and reverse paths are represented by way of ordered lists

()0, , []req req req
ij ij ijd i d d i L R C SF∀ ∈ ∈ ∪ ∪ ∪⎡ ⎤⎣ ⎦

()0, , []res res res
ij ij ijd i d d i L R C∀ ∈ ∈ ∪ ∪⎡ ⎤⎣ ⎦ (1).

where req and res indicate the direct and reverse path, respec-
tively. Each list includes all devices crossed along the corre-
sponding path (links, routers, cards, and server farms).

Let rtimeij be the response time experienced by the request
from user group ui to application aj, including the delay along
both the direct and reverse paths. The response time along the
direct path is supposed to include the actual service time of the
request. Response time is calculated as

 () ()1 1[] []
= =

= +∑ ∑
req res
ij ijd dreq res

ij ij ij ij ijn nrtime rtime d n rtime d n (2).

Application requests hit all devices along the direct and re-
verse paths with the same frequency λij = |ui|⋅msg(ui, aj).

The SSL acceleration application is performed by the card
in the router of the destination site of the request. SSL accel-
eration for a given request cannot be executed in sites different
from the destination of the request, as the request would pro-
ceed unencrypted to the destination site. If the router placed in
the destination server farm site has not a card, then the server
farm must execute the SSL application.

The response time for devices (viz. links, routers, cards, and
server farms) is computed according to device parameters and
the amount of requests crossing single devices. The response
time for each request is computed as the sum of the average
time spent by each request (or response) in a set of multiple
class M/M/1 queues and the corresponding service times (the
propagation time is also considered in link devices).

C. Objective function
The objective function to be minimized is the total cost, TC,

of the technology resources selected to satisfy requirements
over a time horizon indicated as years.

()() ()[]cost ,

ij

ij i j
l L

TC years type l dist s s
∈

= ⋅ ⋅ +∑

()()[]

0

cost

i ji
a Aj

i i

sf S x

type sf sf

∈

∈ ≠

+ ⋅ +

∑

∑

()() (())

1

cost cost

i
i ij

r Rj

i i
r R

c C w

type r type c

∈

∈
∈ =

+ +

∑

∑ ∑ (3).

D. Constraints
Thirteen constraints have been identified in our model:

1) each application must be allocated on one server farm;
2) each server farm must be allocated on one site;

Fig. 3: Flow diagram of the cost minimization algorithm.

3) server farms only on sites allowed to host server farms;
4) each router must be assigned at most one card;
5) all user groups must be served with a response time lower

than their application delay requirements;
6) only link types that meet distance constraints;
7, 8) only server types that meet RAM and disk space con-

straints;
9) on the maximum number of servers allowed in server farms;
10, 11, 12, 13) on the maximum load on server farms, cards,

routers and links (100%).

V. COST MINIMIZATION ALGORITHM
The cost minimization algorithm, outlined in Fig. 3, aims at

identifying the minimum-cost solution that satisfies technol-
ogy requirements with corresponding technology resources.
The algorithm is based on the tabu-search (TS) approach [23].

Two initial solutions are identified first: a fully centralized
solution allocating all applications on one server farm and a
fully decentralized solution allocating each application on a
separate server farm. They both meet constraints 1, 2, 3, 4.

Then, the device-sizing phase identifies a set of technology
resources meeting all requirements 1─13, including applica-
tion delays, and calculates the corresponding total cost TC.
Tabu moves are made to reduce TC until either the cost of so-
lutions reaches a steady state for a predefined number of
moves or a maximum number of moves is reached. The device
sizing phase is repeated after each tabu move. The final solu-
tion is selected as the one with lowest cost among those ob-
tained from the centralized and decentralized initial solutions.

In our tabu-search implementation, the neighbourhood of a
solution is explored by executing four types of moves: appli-
cation displacement, server farm displacement, card insertion,
and card removal. An application displacement removes a
server application from a server farm and allocates it on a dif-
ferent server farm. A server farm displacement removes a
server farm from a site and allocates it on a different site. A
card insertion adds a card to a router, while a card removal
removes a card from a router. Tabu moves must satisfy con-
straints 1, 2, 3, and 4. The execution of a move changes the
configuration of decision variables x, y, w. This configuration
is an input to the device sizing phase of the cost minimization
algorithm described in Fig. 3.

The device sizing phase aims at identifying the minimum-
cost set of technology resources satisfying requirements within
the current configuration of decision variables x, y, w. Sizing
is performed in two steps: a first sizing followed by a se-
quence of upgrades and downgrades.

The first sizing assigns to each device the minimum-cost
type that satisfies requirements according to commonly used
rules of thumb. According to these rules of thumb, device
types are chosen in such a way that the maximum load of all
queues is lower than 60% [24].

Given a configuration of decision variables x, y, w and the
type() assignment for each device – as computed in the first
sizing step – the rtimeij for each (ui, aj) pair can be determined.
A configuration score is then computed to measure the dis-
tance between actual and maximum response time:

 ({) }, | 1 max , 0γ =
= −∑

ij
ij iji jscore rtime delay (4).

If score = 0, the current configuration meets delay con-
straints, else a device upgrade is needed. If score > 0, pairs
with a response time higher than maximum delay are ad-
dressed, by considering for upgrade the devices along corre-
sponding request paths. An upgrade replaces the current type
of a device with the lowest-cost type that has a cost greater
than that of the current type. Note that a more costly server
farm type can be obtained, either by using a different server
type or by changing the total number of servers in the farm.

The algorithm performs a series of upgrades, each of them
lowering the configuration score, until score = 0 is reached.
Upgrades that deliver a higher score reduction are performed
first. All intermediate configurations are feasible since they
also comply with constraints 1─4.

When a solution with score = 0 is found, the configuration
space is explored by means of a series of downgrades and up-
grades in order to identify the minimum-cost set of devices.
Device downgrades bring to solutions with lower total cost. A
series of downgrades and series of upgrades are iteratively
performed until a given maximum number of configuration
changes is reached. The best solution found with all upgrades
and downgrades with score = 0 is selected as the output of the
device sizing phase.

VI. EMPIRICAL VERIFICATION
Empirical tests have been carried out, using a prototype tool

we developed implementing the cost minimization algorithm.
This tool includes a database of commercial technological re-
sources and related cost data.

Server types have been surveyed from the web sites of four
main vendors: Dell, HP, IBM, and ION Computers. Perform-
ance data have been collected for 460 servers. Computing ca-
pacity is benchmarked by means of SpecInt2000 [20]. A server
farm is supposed to be composed by at most ϕ = 30 servers.
Thus, our tool can choose among 13800 different server farms.

The database of routers is based on Cisco products. Two
types of routers are considered, with cost and performance
data provided by Cisco.

An SSL accelerator card type is available, with parameters
set to make it able to perform up to 1000 handshakes/s, i.e. a

common value for market available devices [22]. The cost of
the card has been initially considered equal to 50,000 USD.

Cost data of links have been collected from the official pric-
ing documents of digital leased lines in Italy [25].

In the following, we provide empirical evidence of the cost
savings granted by cards supporting the SSL acceleration ser-
vice. Analysis has been performed by comparing the costs of
optimization solutions obtained with and without cards. Costs
have been minimized over a three-year period.

Analysis focuses on a scenario where server farms are
forced to be placed in one site called Application Service Pro-
vider (ASP), as shown in Fig. 4. The applications required by
the user are HTTP (application a1) or HTTPS (application a2)
page generation requests. The server applications compute and
send e-commerce web pages with size 36 kB. Application pa-
rameters of server and SSL applications have been computed
by using the empirical data presented in Section II.A applied
to this particular scenario.

A total number of 6,000 active users have been considered.
Each of them has an active web session and send a page re-
quest every 50 s. Half of the users require a secure connection
by SSL protocol. Fig. 4 shows the topology of the considered
scenario and the corresponding user groups. Two POP nodes
are connected to a core node and two user sites are connected
to each pop node. The distance between POP and user sites is
25 km, while the distance between Core and POP sites is
50 km. One user group is assigned to each user site. All server
farms must be placed in the ASP site (serv(s8) = 1).

The cost minimization algorithm is applied with varying de-
lay constraints. In each simulation, the same delayij value is
used for all user groups and applications. Two cases, with or
without the SSL acceleration cards, have been compared.

In Fig. 5, the total cost TC is plotted as a function of the re-
quired average end-to-end delay. Costs are significantly higher
when delay requirements are tighter, about 30% higher as the
maximum response time decreases from 0.40 s to 0.20 s.

From the results reported in Fig. 5, we notice that SSL ac-
celeration is convenient only if the delay requirement is below
0.4 s. Cost savings allowed by solutions with SSL acceleration
cards, compared to solutions without cards, are higher when
the maximum allowed delay is lower: for instance, they are
equivalent to 25% with delay 0.14 s and to 2% with delay
0.34 s. An extensive analysis for a large set of different system
parameters has shown that, in general, SSL acceleration is
convenient with a strict end-to-end delay performance.

Furthermore, we analyzed the maximum cost/performance
ratio of SSL acceleration cards, which makes convenient
adopting SSL acceleration. In Fig. 6, the maximum cost mak-
ing advantageous employing SSL acceleration is plotted as a
function of the CPU benchmark of the SSL acceleration card.
The relative benchmark of cards is defined as the ratio of the
benchmark of cards used in the optimization to the benchmark
of a standard SSL accelerator, used as a reference for our
study, able to perform up to 1000 handshakes/s. In Fig. 6, the
curves refer to delay targets equal to 0.3 s, 0.5 s and 0.7 s, and
to 6,000 or 3,000 users (in the latter case, the number of users
in the user groups has been halved).

Fig. 4: Topology of the test scenario.

2

2,5

3

3,5

4

4,5

5

5,5

6

0,1 0,15 0,2 0,25 0,3 0,35 0,4

Delay (s)

TC
 (M

ill
io

n
$)

No Card
Card

Fig. 5: Total cost in the scenario vs. the required average end-to-end delay.

$1.000

$10.000

$100.000

$1.000.000

0,00 0,05 0,10 0,15 0,20 0,25 0,30

SSL Accelerator Relative Benchmark

SS
L

A
cc

el
er

at
or

 C
os

t (
$

lo
ga

rit
hm

ic
 s

ca
le

)

0,3 - 6000 0,3 - 3000
0,5 - 6000 0,5 - 3000
0,7 - 6000 0,7 - 3000

Fig. 6: Cost vs. CPU benchmark trade-off of SSL cards.

The graph in Fig. 6 shows that the cost/benchmark curves
exhibit a sharp knee shape or even have no points below a cer-
tain benchmark value. This behaviour corresponds to the need
of a minimum SSL accelerator CPU benchmark to meet the
delay target. When the minimum benchmark value is safely
above the required value, the maximum card cost to obtain an
economically convenient SSL acceleration is nearly constant.

For example, with 6,000 users and delay target 0.3 s, we
need a benchmark of roughly 7,200 (i.e., 0.08 multiplied by
the reference SSL accelerator benchmark equal to 90,300), be-
ing willing to pay for it at most about 406,300$. On the other
hand, with higher delay target 0.7 s, we will be willing to pay

for it at most about 37,500$. We are interested in higher
benchmarks only if we would like to have a scalable system,
that is, for example, if we forecast a significant growth of the
number of users in the near future.

The Fig. 6 shows that there is an ample space for cost re-
duction. With a relative benchmark equal to 1, we could obtain
cost saving even with a cost more than 40 times greater than
the actual cost of cards. Obviously, the maximum relative cost
of cards enabling the reduction of total cost decreases as the
card benchmark diminishes. However, even for relatively
small benchmarks, cards are still economically advantageous.

VII. CONCLUSIONS
In this work, we have studied the problem of the joint cost-

performance optimization of end-to-end SSL-based services.
We have carried out this complex task by customizing a novel
methodology for the joint optimization of hardware and com-
munication costs, given end-to-end performance constraints.

The concrete implementation of our methodology consists
in an optimization tool implementing a tabu-search mecha-
nism based on a precise and complex mathematical model of
the system resources, architecture, configuration and costs.
Our optimization tool sizes all the system resources (including
servers and communication links) in order to have a system
complying with the end-to-end delay requirements with mini-
mum cost.

Then, we applied our optimization tool in more complex
scenarios and system topologies, in order to check whether
SSL acceleration carried out by special dedicated devices, cur-
rently available on the market, can be more convenient than
end-to-end SSL services. We found a trade-off between in-
creasing costs for servers in the end-to-end solution (server
load is increased by SSL-related tasks) and increasing costs
for SSL accelerators (smaller servers can be chosen as SSL-
related tasks are performed by accelerators).

We examined scenarios with multiple sites and thousands of
users. We found that SSL acceleration is economically conven-
ient only if the end-to-end target delay requirement is strict.
On the contrary, if the end-to-end application-layer delay that
the user can tolerate is large, SSL acceleration is not conven-
ient. More in detail, we have found that with rather strict end-
to-end delay bounds (i.e., on the order of 100-200 ms), the
smallest-cost system constructed with SSL accelerators exhib-
its a cost advantage on the order of 15%-20%, compared to the
same system designed with end-to-end SSL, i.e. without ac-
celerators.

We also investigated the cost-performance trade-off of SSL
accelerators and reported the conditions under which they are
convenient.

REFERENCES
[1] A. O. Freier, P. Karlton, P. C. Kocher, “The SSL protocol version 3.0,”

IETF draft, 1996.
[2] T. Dierks, C. Allen, “The TLS Protocol Version 1.0”. Available:

http://www.ietf.org/rfc/rfc2246.txt, 1999.
[3] S. Kent, R. Atkinson, “Security Architecture for the Internet Protocol,”

RFC 2401, Nov 1998.
[4] L. D. Bisel, “The Role of SSL in Cybersecurity,” IT PROFESSIONAL,

pp. 22-25, 2007.

[5] K. Kant, R. Iyer, P. Mohapatra, “Architectural impact of secure socket
layer on internet servers”, Proc. of International Conference on Com-
puter Design 2000, Austin, Texas, USA, Sept. 2000, pp. 7-14.

[6] L. Wu, C. Weaver, T. Austin, “CryptoManiac: a fast flexible architecture
for secure communication”, ACM SIGARCH Computer Architecture
News, vol. 29, pp. 110-119, 2001.

[7] L. Zhao, R. Iyer, S. Makineni, L. Bhuyan, “Anatomy and performance of
SSL processing”, Proc. of IEEE International Symposium on Perform-
ance Analysis of Systems and Software, 2005. ISPASS 2005, Austin,
Texas, USA, March 2005, pp. 197-206.

[8] Cisco Systems, Inc., “Introduction to Secure Sockets Layer,” White Pa-
per, 2002.

[9] M. Khalil-Hani, V. P. Nambiar, M. N. Marsono, "Hardware Acceleration
of OpenSSL Cryptographic Functions for High-Performance Internet Se-
curity", Proc. of 2010 International Conference on Intelligent Systems,
Modelling and Simulation (ISMS 2010), Liverpool, UK, 27-29 Jan. 2010.

[10] A. Roy-Chowdhury, J. S. Baras, "Performance-Aware Security of Uni-
cast Communication in Hybrid Satellite Networks", Proc. of IEEE ICC
'09, Dresden, Germany, 14-18 June 2009.

[11] D. A. Menasce, V. A. F. Almeida, Scaling for E-Business: Technologies,
Models, Performance, and Capacity Planning, Prentice Hall, 2000.

[12] H. K. Jain, “A comprehensive model for the design of distributed com-
puter systems”, IEEE Trans. Software Eng., vol.13, pp. 1092-1104, 1987.

[13] J. E. Blyler, G. A. Ray, “What's Size Got to do with it?: Understanding
Computer Rightsizing”, Wiley-IEEE Press, 1997.

[14] B. Gavish, H. Pirkul, “Computer and Database Location in Distributed
Computer Systems”, IEEE Trans. on Computers, vol. 35, 1986, pp. 583-
590,

[15] A. Aue, M. Breu, “Distributed Information Systems: An Advanced
Methodology”, IEEE Trans. Software Eng., vol. 20, pp. 594-605, 1994.

[16] L. W. Clarke, G. Anandalingam, “An integrated system for designing
minimum cost survivable telecommunications networks”, IEEE Transac-
tions on Systems, Man, and Cybernetics, Part A: Systems and Humans,
vol. 26, pp. 856-862, 1996.

[17] J. Lui, M. Chan, “An efficient partitioning algorithm for distributed vir-
tual environment systems,” IEEE Trans. Parallel Distrib. Syst., vol. 13,
pp. 193-211, 2002.

[18] R. Subbu, A. C. Sanderson, “Network-based distributed planning using
coevolutionary agents: architecture and evaluation,” IEEE Transactions
on Systems, Man, and Cybernetics, Part A: Systems and Humans, vol.
34, pp. 257-269, 2004.

[19] J. Guitart, V. Beltran, D. Carrera, J. Torres, E. Ayguadé, “Characterizing
secure dynamic web applications scalability”, Proc. of 19th IEEE Inter-
national Parallel and Distributed Processing Symposium, Denver, CO,
USA, April 2005.

[20] Standard Performance Evaluation Corporation. Available:
http://www.spec.org/, 2010.

[21] http://support.microsoft.com/kb/265369/.
[22] W. Chou, “Inside SSL: Accelerating Secure Transactions,” IT

PROFESSIONAL, pp. 37-41, 2002.
[23] F. Glover, M. Laguna, Tabu Search, Kluwer Academic Publishers, 1997.
[24] D. Ardagna, C. Francalanci, M. Trubian, “Joint Optimization of Hard-

ware and Network Costs for Distributed Computer Systems,” IEEE
Transactions on Systems, Man and Cybernetics, Part A: Systems and
Humans, vol.38, no.2, pp.470-484, 2008.

[25] Telecom Italia, “Collegamenti Diretti Retail”, Available:
http://www.wholesale-telecomitalia.it/, 2010.

	I. Introduction
	II. SSL Acceleration
	A. The Secure Socket Layer (SSL) Protocol
	B. SSL Acceleration Cards and Content Switches

	III. The Optimization Problem
	A. Technology Requirements
	B. Hardware Resources

	IV. The Optimization Model
	A. Decision Variables
	B. Response Time
	C. Objective function
	D. Constraints

	V. Cost Minimization Algorithm
	VI. Empirical Verification
	VII. Conclusions
	References

