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Abstract—In this paper, we investigate possible time-
correlation of answered call arrivals in sets of real GSM
telephone traffic data. Instead of attempting to model the
empirical distribution of the call interarrival time, as done
in several previous works in literature, we emphasize results
obtained by the Modified Allan Variance (MAVAR), a widely used
time-domain quantity with excellent capability of discriminating
power-law noise types. The call arrival rate exhibits a diurnal
trend, with peak hours in the morning and late afternoon. Besides
this diurnal rate change, the number of call arrivals in a second
is found perfectly uncorrelated to the number of arrivals in other
seconds and Poisson distributed, with good consistency by X 2-
test evaluation. Uniform and accurate whiteness of call arrivals
per second is verified in all hours, regardless the time of the day.
In all series analyzed, the empirical statistics of both originated
and terminated call arrivals proves excellent consistency with the
ideal Poisson model with diurnal variable rate λ(t). This study
may be valuable to researchers concerned about realistic traffic
modelling in planning and performance evaluation of cellular
networks.

Index Terms—GSM, modified Allan variance, Poisson random
process, traffic measurement (communication), traffic model.

I. INTRODUCTION

CLASSIC theory of telephone traffic (a.k.a. teletraffic) was
developed when networks were exclusively wired, based

on analog Frequency Division Multiplexing (FDM), and the
sole offered service was the so-called Plain Old Telephone
Service (POTS). Telephone traffic theory and algorithms for
dimensioning resources in circuit-switched networks have
been developed since the Sixties, without significant changes
thereon [1]-[4].

Wireless mobile telephony introduced a new scenario, in
which some previous assumptions of traffic statistics may not
hold anymore, given the peculiar behaviour of mobile users.
Then, the impressive growth of mobile user population yielded
the need of characterizing specifically mobile telephone traffic.
Algorithms for dimensioning network resources do rely on
faithful statistical characterization of traffic. Hence, there is a
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need for telecommunications operators and traffic engineers,
for accurate statistical models of mobile telephone traffic.

In classic telephone traffic theory, developed for wired
networks, call arrivals to a local exchange are usually modelled
as a Poisson process, at least over short observation intervals to
assume stationary arrival rate, since the user population served
by the exchange is very large and with negligible correlation
among users. This assumption of memoryless traffic has been
often retained also in presence of mobile users: in literature,
incoming calls in cellular networks are mostly modelled as a
Poisson process, with both call holding time and interarrival
time assumed with negative exponential distribution.

Nevertheless, it has been argued that this Poisson assump-
tion might not be valid in wireless cellular networks for a
number of reasons. First, cells partition the user population
in small sets, each served by a small number of channels and
with possible correlation between users. Moreover, congestion
and repeated call attempts, more likely with radio access
impairments, are major causes of peaks and bursts in offered
traffic and of levelling off the carried traffic. Finally, user
mobility during calls (handover) adds further complexity to the
problem. Therefore, not surprisingly, traffic characterization in
wireless cellular networks has been attracting much attention
in literature since few years.

In most cases, researchers focused on characterizing the
channel holding time or the call holding time, sometimes
based on empirical data. In many studies, the channel holding
time has been modelled by negative exponential distribution.
Nevertheless, several other works contradicted this simple
assumption. In papers [5], [6], for example, the probability
distribution that better fits empirical data, by the Kolmogorov-
Smirnov test, was found to be a sum of lognormal distribu-
tions.

On the other hand, the channel holding time is affected by
user mobility, characterized by the cell residence time. With
exponentially-distributed call holding time, the merged traffic
from new and handoff calls is Poissonian if and only if the
cell residence time is exponentially distributed too [7]. For
cell residence time having general distribution, the channel
holding time distribution was derived analytically in [8], [9].
The channel holding time distribution was also studied in
[10], when the cell residence time has Erlang or Hyper-Erlang
distribution.

As for the correlation between call arrival times, the distri-
butions of the channel idle time (time between the end of an
answered call and the beginning of the next one on the same
channel) and of the call interarrival time in a Public Access
Mobile Radio (PAMR) cellular system were investigated in
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[11]. In that work, the former distribution was approximated
by the Erlang-j,k function and the latter resulted different from
Poissonian negative exponential.

Recently, a further empirical study on real GSM telephone
traffic data was reported in [12]. Answered call holding and
interarrival times were found to be best modelled by the
lognormal-3 function, rather than by the Poissonian negative
exponential distribution.

In summary, several studies contradicted the ubiquitous
likelihood of the classic Poisson model for telephone traffic
in cellular networks and suggested that call arrivals may
be significantly time-correlated, due for example to access
congestion, user mobility and possible correlation between
nearby users. However, we note that the Poisson traffic model
is still assumed in almost all works, mainly for the sake of
simplicity, when cellular network performance is evaluated.
Questions may arise, therefore, on the practical relevance of
this simplifying assumption.

In this paper, we analyze a few sets of real GSM telephone
traffic data, collected by the Italian mobile telecommunications
operator Telecom Italia Mobile (TIM) to billing purposes,
which were already studied in [12]. Instead of attempting
to model the empirical distributions of the call holding time
and of the call interarrival time, as done in [12] and in most
previous works on this subject, we investigate possible time-
correlation of call arrivals directly in the time domain by
means of the Modified Allan Variance (MAVAR), one of
the most sensitive tools to this aim and with demonstrated
excellent capability of discriminating power-law noise, only
recently introduced for network traffic analysis [13], [14].

This paper is organized as follows. In Section II, basic
MAVAR properties are briefly recalled for ease of under-
standing. In Section III, the traffic measurement data and
the analysis criteria are described. In Sections IV and V,
traffic analysis results are presented and a statistical model is
identified. Finally, in Section VI, some conclusions are drawn.

II. THE MODIFIED ALLAN VARIANCE

The MAVAR was originally conceived for frequency sta-
bility characterization of precision oscillators in the time
domain [15]-[19]. It was proposed in 1981 by modifying the
definition of the two-sample variance (a.k.a. Allan variance),
recommended to this purpose by IEEE since 1971 [20], [21].
MAVAR was designed with the goal of discriminating noise
types with power-law spectrum of kind fα(α ∈ R, α > −5)
recognized very commonly in frequency sources. Since then,
it has been widely used in clock stability characterization
and it has been adopted in telecommunications international
standards too [19], [22].

Recently, MAVAR has been also proposed as analysis tool
of self-similar and long-range dependent (LRD) traffic [23].
It has been demonstrated to feature superior accuracy in
estimation of the Hurst parameter H and of the exponent α,
coupled with good robustness against nonstationarity in data
analyzed [13], [14]. MAVAR has been successfully applied
to real Internet traffic analysis, allowing to identify fractional
noise in experimental results [13], [14], [24].

This section briefly recalls some basic MAVAR properties
most relevant to our aim. For details and demonstration of all

statements, the interested reader is referred to the bibliography
cited; in particular, [19], [13], [14] may be suggested as first
readings.

A. Definition

Given an infinite sequence {xk} of samples of an input
signal x(t), evenly spaced in time with sampling period τ0,
MAVAR is defined as

Mod σ2
y (τ) =

1
2n2τ2

0

〈
 1

n

n∑

j=1

(xj+2n − 2xj+n + xj)




2〉

(1)
where τ = nτ0 is the observation interval and the operator
< • > denotes infinite-time averaging.

In practice, given a finite set of N samples xk spaced by
τ0 over a measurement interval T = (N − 1)τ0, a MAVAR
estimate can be computed using the ITU T standard estimator
[19], [22]

Mod σ2
y (nτ0) =

N−3n+1∑
j=1

[
n+j−1∑

i=j

(xi+2n − 2xi+n + xi)

]2

2n4τ2
0 (N − 3n + 1)

(2)
with n = 1, 2, ..., bN/3c. A recursive algorithm for fast
computation exists [19], which cuts down the complexity of
evaluating MAVAR for all bN/3c values of n to O(N2)
instead of O(N3).

The point estimate (2), computed by averaging N − 3n+1
terms, is a random variable itself. Exact computation of
confidence intervals is not immediate and, annoyingly enough,
depends on the spectrum of the underlying noise [25]-[29].
However, in general, confidence intervals are not negligible
only for longest τ , where few terms are averaged. In our
analysis, we avoided to consider last MAVAR values computed
for largest n (the right end of curves).

B. Application to Estimation of Fractional Noise Parameters

As customary in characterization of phase and frequency
noise in precision oscillators [18], [19], [20], [26], [30], we
deal with random processes x(t) with one-sided power spectral
density (PSD) modelled as

Sx (f) =





P∑
i=1

hαif
αi 0 < f ≤ fh

0 f > fh

(3)

where P is the number of noise types considered in the model,
αi and hαi are parameters (αi, hαi ∈ R) and fh is the
upper cut-off frequency. Such random processes are commonly
referred to as power-law noise or fractional noise. Note that
x(t) is not necessarily assumed Gaussian in this model.

Power-law noise with −4 ≤ αi ≤ 0 has been revealed
in practical measurements of various physical phenomena,
including phase noise of precision oscillators [18], [19], [20],
[26], [30] and Internet traffic [13], [14], [24], [31], whereas P
should be limited to few units for the model being meaningful.
Although values αi ≤ −1 yield model pathologies, such
as infinite variance and even nonstationarity, this model is
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Fig. 1. Originated call arrivals {xOk} (24 Oct. 2003, T = 24 h, N =
86400, τ0 = 1 s).
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Fig. 2. Originated active calls {nOk} (24 Oct. 2003, T = 24 h, N = 86400,
τ0 = 1 s).

commonly used, considering also that real-world constraints
imply measurement finite bandwidth and duration.

Under this general hypothesis of power-law spectrum, first
we point out that the infinite-time average in definition (1)
converges for αi > −5 (being MAVAR the variance of a mov-
ing average of data second difference). Then, by considering
separately each term of the sum in (3) and letting P = 1,
α = αi (−5 < α ≤ 0), MAVAR is found to obey a simple
power law of the observation interval τ (ideally asymptotically
for n → ∞, keeping constant nτ0 = τ , but in practice for
n > 4), i.e.

Mod σ2
y (τ) ∼ Aµτµ (4)

where µ = −3 − α [13], [14], [18], [19]. If P > 1, it is
immediate to generalize (4) to summation of powers Aµi

τµi .
Therefore, if x(t) obeys (3) and assuming sufficient sepa-

ration between components, a log-log plot of MAVAR looks
ideally as a broken line made of P straight segments, whose
slopes µi give the exponent estimates αi = −3 − µi of the
power-law noise components prevailing in distinct ranges of
τ .

In papers [23], [13], [14], these estimates of αi were demon-
strated to be very accurate, even better than those obtained
by the Daubechies’ wavelet logscale diagram technique [32],
which is one of the best reputed and most widely adopted
methods for analyzing LRD traffic. Moreover, nonstationary
components of various kinds in the analyzed sequence (viz.
polynomial drifts, periodic trends and steps) affect MAVAR
negligibly or in a well recognizable way [13], [14]. In par-
ticular, data offset and linear drift are cancelled in MAVAR
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Fig. 3. Originated call arrivals {xOk} (23 Jan. 2004, T = 24 h, N = 86400,
τ0 = 1 s).
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Fig. 4. Originated active calls {nOk} (23 Jan. 2004, T = 24 h, N = 86400,
τ0 = 1 s).

results, being it based on data second difference. Therefore,
we chose MAVAR as main tool to analyze traffic traces.

III. GSM TRAFFIC DATA SETS AND ANALYSIS CRITERIA

We analyzed sets of real GSM telephone traffic data,
collected in a Mobile Switching Centre (MSC) by the operator
Telecom Italia Mobile (TIM) for billing and traffic monitoring,
which were already studied in [12]. Data recorded are the
initial (arrival) time and duration of GSM answered voice
calls, originated or terminated in RM82D1, a wide-area cell
located in Fiumicino (30 km from Rome, Italy). Time scale
is discrete, with 1-second intervals, as standard in network
management systems (i.e., events are cumulated throughout
each second).

Unfortunately, unanswered call attempts (i.e., due to called
party unavailability or busy line, which may account for
30%-40% of the total call attempts) could not be recorded.
Moreover, no information was recorded to trace user mobility
between cells. However, we notice that the large cell size
makes handover sporadic.

The exclusion of all unsuccessful repeated call attempts,
the negligible impact of handovers and the seeming absence
of congestion, as observable forth in Figs. 2 and 4, would
lead to expect that call arrivals in data analyzed tend to
behave as Poisson events, in contrast with results [12], where
the distribution of call interarrival times is estimated to be
not negative-exponential. On the other hand, since the cell
where telephone traffic was recorded is located close to the
most important Italian airport and to an important highway, it
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Fig. 5. MAVAR computed on sequences {xOk} of 24 Oct. 2003 and 23
Jan. 2004 (T = 24 h, N = 86400, τ0 = 1 s).

would be well-founded to conjecture some correlation between
calls as well. Therefore, since modelling distributions of
interarrival times in empirical data can be thorny, although
commonly pursued, we sought possible time-correlation of
call arrivals directly in the time domain by MAVAR, owing to
its superior sensitivity and robustness to spurious components
(e.g., trends) in experimental data.

Traffic data analyzed were collected continuously over the
24 hours in 6 distinct days: 18 July 2003, 11 Aug. 2003, 24
Oct. 2003, 26 Oct. 2003, 23 Jan. 2004 and 25 Jan. 2004.
To summarize, we analyzed 6× 2 traffic files (originated and
terminated calls), each one further divided in 24 segments (one
per hour), listing answered calls with arrival time and duration
(time quantized to 1 s). Processing this raw traffic data, we
produced four new sets of 24 × 6 traffic data series, namely
for a given time frame:
• xO and xT, whose items xOk and xTk are the number

of originated and terminated, respectively, new calls in
the k-th second (i.e., the answered call arrival rate in the
k-th second);

• nO and nT, whose items nOk and nTk are the number
of originated and terminated, respectively, simultaneous
active calls in the k-th second.

Then, we sought possible time-correlation of call arrivals
in the time domain, by computing MAVAR on time series
{xOk} and {xTk}. Moreover, we evaluated the applicability
of a Poisson model to describe the statistical properties of the
call arrival process.

IV. ANALYSIS RESULTS

All traffic sequences xO and xT examined are strongly
nonstationary and exhibit a diurnal pseudoperiodic average
trend, with peak hours in the morning and late afternoon.
For example, Figs. 1, 2 and Figs. 3, 4 plot the originated
call arrivals {xOk} (new calls/s) and simultaneous active
calls {nOk}, recorded on 24 Oct. 2003 and 23 Jan. 2004,
respectively (one black pixel plotted for each data value). Figs.
2 and 4 show no evidence of congestion. Similar trends were
observed in all other days.

A. Study of Time-Correlation of Call Arrivals

We computed MAVAR on the 6×2 sequences {xOk} and
{xTk} over the whole measurement period T = 24 h (N =

86400, τ0 = 1 s). For instance, Fig. 5 plots MAVAR computed
on the same sequences of Figs. 1 and 3 (originated call arrivals
{xOk} recorded on 24 Oct. 2003 and 23 Jan. 2004).

By inspection of Fig. 5, we notice that Mod σ2
y (τ) is almost

perfectly linear (in the log-log plot) for τ up to 200 s or
500 s, with slope µ ∼= −3.0 corresponding to α ∼= 0.0. This
means that in the short term (i.e., on observation intervals up to
few hundreds of seconds), the deviation of the data sequence
from a linear trend is purely random white with excellent
approximation (i.e., with no memory), whilst average drifts
of order two and above are negligible (data offset and linear
drift are cancelled anyway in MAVAR results).

For τ longer than ~500 s or so, conversely, Mod σ2
y (τ)

departs from the linear trend, capturing the diurnal pseudope-
riodic variation of the arrival rate evident in Figs. 1 and 3. For
long τ , the higher slope µ reflects the slower wander of the
data sequence averaged in the long term. Moreover, we should
also consider the poor statistical confidence of Mod σ2

y (τ)
values for longest τ .

In all 24 hours sequences, for both originated and ter-
minated calls, we observe the same behaviour with little
variation. In all cases, Mod σ2

y (τ) is linear for τ < 102÷103s,
with slope µ ∼= −3.0 (α ∼= 0.0, maximum deviation ±0.02,
evaluated by linear regression). Therefore, the number of
call arrivals in a second has been always found perfectly
uncorrelated to the number of arrivals in other seconds. Non-
negligible time-correlation may be found only averaging on
long observation intervals (say, at least 500 s), due to the
diurnal variation of the average arrival rate.

B. Poisson Model of Call Arrivals

From such results, it comes natural to infer that both
originated and terminated call arrivals may be modelled as
a classic (non-homogeneous) Poisson random process with
slowly variable arrival rate λ(t), which follows a diurnal trend
such as that in Figs. 1 and 3. Given the data set of a particular
day, λ(t) can be estimated (e.g., by a moving average or
some more sophisticated method) and becomes, therefore, a
deterministic term in the Poisson model of the random arrival
process. However, the pseudoperiodic arrival rate λ(t) changes
randomly day by day, although to a limited extent. Statistical
characterization of λ(t) is beyond the scope of this paper and,
however, would need measuring traffic data over many more
days (i.e., years) to be significant.

These MAVAR results ensure the absence of correlation
between samples of time series {xOk} and {xTk}, but give
no insight on intervals shorter than τ0 = 1 s. If the call
arrival process is ideal Poisson, on the other hand, then
time correlation is null even on infinitesimal intervals and, in
particular, the number of arrivals xk in τ seconds is a random
variable distributed as

P (xk = i) =
(λτ)i

i!
e−λτ (5)

with both mean mx and variance σ2
x equal to λτ .

Hence, we studied the distribution of samples xOk and
xTk in all traffic series. Due to the severe nonstationarity of
sequences, the distribution of the N = 84000 samples over
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TABLE I
MEAN, VARIANCE AND X 2–TEST (TO SAME-MEAN POISSON DISTRIBUTION) OF SUBSEQUENCES {xOk} RECORDED ON 24 OCT. 2003 AND 23 JAN.

2004 (τ0 = 1 S).
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)

Traffic h. 16-18
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Fig. 6. Distribution of samples xOk (16.00-18.00, 24 Oct. 2003, T = 2 h,
N = 7201, τ0 = 1 s) compared to the Poisson distribution with same mean.

the whole period (T = 24 h) does not obey (5) (τ = 1 s).
Also their mean and variance are different.

The right approach, by good practice in telephone traffic
engineering, is restricting evaluation of statistics to peak hours,
where stationarity holds at best and the number of calls per
second is maximum (quantization effects are minimum, as
evident in Figs. 1 and 3). Thus, we computed mean, variance
and distribution of samples xOk and xTk, in all six days,
separately in four peak-hour intervals 9.00-11.00, 11.00-13.00,
16.00-18.00 and 18.00-20.00 (N = 7201). In all cases, mean
and variance resulted nearly equal (σ2

x/mx = 1 ± 0.04) and
the distribution very close to (5).

For example, numerical results obtained on subsequences
{xOk} of 24 Oct. 2003 and 23 Jan. 2004 are summarized in
Table 1 (cf. Figs. 1 and 3). In Fig. 6, moreover, the normalized
distribution of samples xOk in interval 16.00-18.00 of 24 Oct.
2003 is compared to the Poisson distribution (5) having same
mean. The two distributions match very accurately, even where
confidence is little.

To have a quantitative measure of how the Poisson dis-
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Fig. 7. MAVAR of sequence {xOk} (19.00-20.00 24 Oct. 2003, T = 1 h,
N = 3600, τ0 = 1 s).

tribution and the empirical distributions of samples xOk and
xTk do match, we evaluated the standard chi-square test [33].
In peak-hour intervals of all days, the values of the chi-
square probability Q(X 2) are above 0.75.1 Precise values are
summarized in Table 1 as well.

In conclusion, our analysis of traffic data, by both MAVAR
and X 2 test evaluation, demonstrates excellent consistency
between the empirical statistics of new call arrivals and the
ideal non-homogeneous Poisson model with variable rate λ(t).

C. More about Stationarity: Whiteness of Call Arrivals

Since all traffic sequences exhibit a diurnal trend in the
average arrival rate, we investigated whether also the white-
ness of short-term random fluctuations (cf. Sec. IV-A) is

1A small value of Q(X 2) indicates a significant difference between
distributions. In other words, it disproves (to a certain level of significance)
the null hypothesis that two data sets are drawn from the same population
distribution function. Disproving the null hypothesis, in effect, proves that
the data sets are from different distributions. Failing to disprove the null
hypothesis, on the other hand, only shows that the data sets can be consistent
with a single distribution function. See [33] for details.
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Fig. 8. Values of α over the 24 hours, estimated by MAVAR in originated
call arrivals/s sequences {xOk}} (T = 1 h, N = 3600, τ0 = 1 s, τ ≤ 100
s).

affected similarly. To this aim, we analyzed by MAVAR
the 1 hour traffic data series separately. From each of the
24 × 6 × 2 subsequences, we estimated the exponent α of
the underlying fractional noise dominant in the short term, by
linear regression of Mod σ2

y (τ) on interval τ ≤ 100 s.
For example, Fig. 7 plots MAVAR computed on one of those

subsequences (originated call arrivals/s, recorded on 19.00-
20.00, 24 Oct. 2003, T = 1 h, N = 3600, τ0 = 1 s). As
expected, Mod σ2

y (τ) follows approximately a linear trend on
its whole length (µ ∼= −3.03, α ∼= +0.03 for τ ≤ 100 s).
Compared to 24-hours results (cf. Fig. 5), we notice that here
the line is slightly more irregular, due to less confidence.

The sequences of values {αi,j} (i = 1, 2, . . . , 6; j =
1, 2, .., 24), estimated in each hour of the 6 days, are plotted in
Figs. 8 and 9, for originated and terminated calls, respectively.
We notice, on the one hand, that no periodicity is evident and,
on the other, that estimated values αi,j have small uncertainty
around their mean mα

∼= 0. Therefore, we conclude that
call arrival sequences {xOk} and {xTk} result uniformly and
accurately white in all hours, regardless the time of the day.

D. Simultaneous Active Calls

We repeated the analysis of Sec. IV-A on the sequences
{nOk} and {nTk}, i.e. on the number of simultaneous active
calls (T = 24 h, N = 86400, τ0 = 1 s). For instance, Fig.
10 plots MAVAR computed on the same sequences of Figs. 2
and 4 (originated active calls {nOk} recorded on 24 Oct. 2003
and 23 Jan. 2004). Moreover, Fig. 11 plots the PSD estimated
on the sequence of Fig. 2 (24 Oct. 2003). Also in this case,
as obvious, a similar behaviour was observed in all days.
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Fig. 9. Values of α over the 24 hours, estimated by MAVAR in terminated
call arrivals/s sequences {xTk} (T = 1 h, N = 3600, τ0 = 1 s, τ ≤ 100
s).
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Fig. 10. MAVAR computed on sequences {nOk} of 24 Oct. 2003 and 23
Jan. 2004 (T = 24 h, N = 86400, τ0 = 1 s).

The random process n(t) (continuous-time version of se-
quence {nk}) is given by the summation of rectangles starting
at each call arrival and having random length (call duration).
Analysis of this problem is outside the scope of this paper,
but is equivalent to the study of the number of active servers
in an M/G/∞/0 queue (telephone multiplexer). If calls
begin as Poisson events and have random duration distributed
as a negative exponential, the PSD of n (t) (neglecting its
continuous component) results having form

Sn (f) =
A

B + f2
(6)

as derived in the Appendix.
Observing Figs. 10 and 11, we notice that the experimental

results do match this analytical model, although the call du-
ration distribution is different than negative-exponential [12].
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Fig. 11. PSD estimated as periodogram (Hann windowing on segments
of 1000 data points) on sequence {nOk} of 24 Oct. 2003 (T = 24 h,
N = 86400, τ0 = 1 s).

In Fig. 11, the PSD behaves as ∼ 1/f2 for f > 10−2 Hz. In
Fig. 10, the trend of Mod σ2

y (τ) is somehow consistent with
such a PSD, if we notice that:

• in the short term (τ < 102 s), the average slope is
approximately µ ∼= −1, corresponding to α ∼= −2;

• in the long term (τ > 102 s), besides the effect of diurnal
wander for τ > 103 s, the average slope increases, due
to flattening of Sn(f) for f → 0 (cf. eq. (6));

• the slope of Mod σ2
y (τ) for n < 4 may be not significant

(Sec. II-B).

V. CONCLUSIONS

In literature, several studies contradicted the ubiquitous
likelihood of the classic Poisson model for telephone call ar-
rivals in wireless cellular networks, due for example to access
congestion, user mobility and possible correlation between
nearby users. Nevertheless, this traffic model is still commonly
assumed in most works, mainly for the sake of simplicity,
when cellular network performance is evaluated.

In this paper, we investigated possible time-correlation of
both originated and terminated answered call arrivals in sets of
real GSM telephone traffic data. Results obtained by MAVAR
time-domain analysis have been emphasized, owing to its
superior sensitivity and capability of discriminating power-
law noise types, to overcome the thorniness of modelling the
distribution of call interarrival times in empirical data. The
main findings can be summarized as follows.

• All traffic sequences examined are strongly nonstationary.
The call arrival rate exhibits a diurnal pseudoperiodic
trend, with peak hours in the morning and late afternoon
(see Figs. 1, 2, 3, 4).

• Besides the diurnal variation of the average arrival rate,
the number of call arrivals in a second has been found
perfectly uncorrelated to the number of arrivals in other
seconds (Secs. IV-A and IV-C).

• Restricting evaluation of statistics to short time intervals
(∼ 1 h) or better to peak hours, to ensure stationarity
of the arrival rate, the number of call arrivals in a
second has been found having same mean and vari-
ance (σ2

x/mx = 1 ± 0.04) and distributed, with good
consistency by X 2-test evaluation, as the ideal Poisson
probability distribution (Sec. IV-B).

• Uniform and accurate whiteness of call arrivals per
second has been verified in all hours, regardless the time
of the day (Sec. IV-C).

In conclusion, call arrivals proved excellent consistency,
by MAVAR analysis and X 2-test evaluation, with the non-
homogeneous Poisson model with diurnal variable rate λ(t),
as expected considering that handover and congestion effects
are negligible in experimental data analyzed. On the contrary,
attempting to model empirical distributions of call interarrival
times is difficult and may give ambiguous results (cf. also
results [12] on same experimental data).

These results confirm, at least to the limited extent of these
empirical data, that the Poisson model is still adequate to
describe realistically telephone traffic in cellular networks,
unless focusing specifically on particular issues as small user
population, access congestion and very frequent handovers.

APPENDIX
PSD OF PROCESS n(t)

Let the process n(t) be defined as

n (t) =
∑

hT (t− tj) (7)

where tj are Poisson instants with average rate λ and hT (t)
is a pulse response dependent on the random variable T (shot
noise). Its PSD is given by [34]

Sn (f) = λ

∫
|HT (f)|2 p (T ) dT (8)

where p (T ) is the probability density function of T .
If hT (t) is the unitary rectangle in interval (0, T ) and p(T )

is the negative-exponential function with mean 1/µ, then

Sn (f) = λ

∫ ∞

0

(
sin πfT

πf

)2

µe−µT dT =
2λ

µ2 + 4π2f2
(9)

having neglected the continuous component λ/µ.
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