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Abstract-In order to estimate the Hurst parameter of Internet 
traffic data, it has been recently proposed a log-regression esti­
mator based on the so-called modified Allan variance (MAVAR). 
Simulations have shown that this estimator achieves higher 
accuracy and better confidence when compared with an other 
method of common use based on wavelet analysis. Here we link 
it to the wavelets setting and stress why a different analysis for 
the two approaches is required. We then focus on the asymptotic 
analysis of the MAVAR log-regression estimator and provide 
new formulas for the related confidence intervals. By numerical 
evaluation, we analyze these formulas and make a comparison 
between three suitable choices on the regression weights, also 
optimizing over different choices on the data progression. 

I. INTRODUCTION 

Internet traffic, as well as many different kinds of real data 
(Hydrology, Economics, Biology), has been demonstrated to 
exhibit self-similarity and long-range dependence (LRD) on 
various time scales [1], [2], [3]. In a self-similar random 
process, a dilated portion of a realization, by the scaling Hurst 
parameter H, has the same statistical characterization than the 
whole. On the other hand, the LRD is commonly equated to 
an asymptotic power-law behaviour of the spectral density of a 
related stationary random process, and it is thus characterized 
by the exponent ex of such a power-law. 

Though a self-similar process can not be stationary (and 
thus not even LRD), these two proprieties are often related in 
the following sense. Under the hypothesis that a self-similar 
process has stationary (or weakly stationary) increments, the 
scaling parameter H enters in the description of the spectral 
density of the increments, providing an asymptotic power-law 
with exponent ex = 2H - 1. The most paradigmatic example 
of this connection is given by the fractional Brownian motion 
and by its increment process, the fractional Gaussian noise [4]. 

Among the different techniques introduced in the literature 
in order to estimate the Hurst parameter H, here we focus 
on a method based on the log-regression of the Modified 
Allan Variance (MAVAR). The MAVAR is a well known time­
domain quantity generalizing the classic Allan variance [5], [6], [7]. It has been proposed for the first time as a traffic 
analysis tool in [8] and then its performance in estimating 
LRD has been evaluated by simulation [8], [9]. 

Among other examples, it has been successfully applied in 
estimating the LRD of real IP traffic [10] and of GSM call 
arrivals [11], while from the theoretical point of view, its good 

behavior have been confirmed by some recent results where, 
under the assumption that the signal process is a fractional 
Brownian motion, the asymptotic normality of the estimator 
has been shown [12]. 

These works have pointed out the high accuracy of the 
method in estimating the parameter H, in particular when 
compared with the well-established log-diagram based on 
Daubechies wavelets [8], [9]. 

The aim of this work is to analyze theoretically and numeri­
cally the performance of the MAVAR log-regression estimator 
for different choices on the regression weights. Here we focus 
on three different weights: The simple linear regression (SLR)­
weights, used in the implementation of the method in [10], [11]; the Abry-Veitch (AV )-weights [13]; the FMRT-weights, 
introduced in a paper by Fay et al. to analyze the perfonnance 
of a (Daubechies) wavelet-based estimator [19]. 

We first show that though a wavelet representation of the 
MAVAR estimator can be given, in analogy to the well known 
connection between Allan variance and Haar-wavelets family [13], the two approaches are intrinsically different and a 
different analysis is required. 

Following the asymptotic analysis performed in [12], that 
shows that the MAVAR estimator is consistent and asymptot­
ically nonnal distributed, we provide new explicit formulas 
for the related confidence intervals of the Hurst parameter. 
By numerical evaluations of such formulas, we show that 
the asymptotic variance decreases with the rate predicted by 
their analytical asymptotes, independently of the choice on the 
weights. 

We then perfonn a comparison between the results obtained 
for the different regression weights, and optimize the results 
over different possible choices on the data progression. 

The results of the numerical analysis are organized in tables, 
to be used as a reference, displaying the behavior of the 
confidence intervals as the size of traffic series and the value 
of the parameter H vary. 

II. SELF-SIMILARIT Y AND LONG-RANGE DEPENDENCE 

According to [3], we consider a centered self-similar real­
valued stochastic process X = {X(t), t E IR}, with X(O) = 

0, that can be interpreted as the signal process. By self­

similarity of X we refer to the existence of a parameter 
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H E (0,1), called Hurst index or Hurst parameter of the 
process, such that, for all a > 0, it holds 

{X(t) , t E lR} � {a-H X(at), t E lR}. (1) 
Assuming further that the process X has weakly stationary 
increments, we get the following expression for the autoco­
variance function 

2 
Cov(X(s), X(t)) = 0"; (ItI2H_lt _ SI2H+ IsI2H ) , (2) 

with (J"� := IE[X2(1)] . Denoting by YT the T-increment 
process of X, defined as YT(t) = X(HT;-X(t)

, it also 
turns out that the autocovariance function of Yn given by 
Ry.,.(t) = Cov(YT(s), YT(s + t)), satisfies asymptotically the 
following power law [1] 

Ry.,.(t) rv O"JtH(2H _1)ltI2H-2 as Itl--+ +00. 

In particular, if H E (�, 1), the process YT displays long­

range dependence, in the sense that there exists a = 2H -1 E 
(0,1) such that the spectral density of the process Yn jy.,. (>..), 
satisfies the condition 

for some finite constant c i=- 0. The parameter a is often 
referred as memory parameter of the process YT [14], [15], [16]. Thus, under the assumption that X is a self-similar 
process with weakly stationary increments, we embrace the 
two main empirical properties of a wide collection of real 
data. 

A basic example of the connection between these two 
properties is provided by the fractional Brownian motion 
BH = {BH(t), t E lR} [4], that is a centered Gaussian process 
with autocovariance function given by (2) with 

2 1 
O"H = r(2H + 1) sin(7rH) . (3) 

It can be shown that B H is a self-similar process with Hurst 
index H E (0,1), which corresponds, for H = 1/2, to the 
standard Brownian motion. Moreover, its increment process 
GT,H(t) = BU(t+

T;-Bu(t) , called fractional Gaussian noise, 

turns out to be a weakly stationary Gaussian process [4], [17], 
displaying long memory for H > �. 

III. THE MODIFIED ALLAN VARIANCE 

In this section we introduce and recall the main properties 
of the Modified Allan variance (MAVAR) [6], [5], and of the 
log-regression estimator of the Hurst parameter based on it [8], [9], [10]. 
A. Definition of MAVAR and related estimator 

Let TO > ° be the sampling period and define the sequence 
of times {tkh>l taking h E lR and setting ti - t i-l = TO, 
i.e. ti = h + T01i -1) . For any integer P 2: 1, we set T = TOP 
and define the modified Allan variance (MAVAR) as 

2 1 (1 p ) 2 O"p,TO := 
2T2lE p � X(ti + 2T) - 2X(ti + T) + X(ti) (4) 

where IE denotes the space-average, that is the average over 
the set of possible values taken by the signal process X [6]. 
For P = 1 we recover the well-known Allan variance. 

Let us assume that a finite sample Xl"'" Xn of the 
process X is given, and that the observations are taken at 
times h, . . .  , tn, with constant sampling period TO. In other 
words we set Xi = X(ti) for i = 1, ... , n. For k E Z, let us 
define 

1 P 
dp,TO,k := -----;;;- 1.)Xk+i+2P - 2Xk+i+p + Xk+i) , (5) 

V 2 TP i=l 

and notice that, from the hypotheses on X of Sec. II, 
{dp,TO,kh is weakly stationary. Moreover, by definitions (4) 
and (5), (J"� 'TO = IE [d�'TO,k]' 

The ITU-T standard estImator [18] for the modified Allan 
variance (MAVAR estimator), also used in [7][8][9][lO], ex­
cept for the different notation is given by 

(6) 

for P E {I, . . .  , In/3j} and np := n - 3p + 1, where the 
space-average IE[·] is replaced by the empirical average over 
the observations sample. 

B. MAVAR and wavelet estimators 

Consider the generalized process Y 
defined through the set of identities 

{Yet), t E lR} 

t2 Y(t)dt = X(t2) - X(t1) , Jtl 
In short, we write Y = X. With this definition we can 

rewrite the MAVAR and its related estimator as functions of 
the process Y. In particular we can write 

1 p ( rti+k+2P rti+k+p ) dp,TO,k = 
y'2p2To � Jti+k�;t)dt - Jti+:(t)dt . (8) 

Now we claim that, for p fixed, this random variable recalls a 
family of discrete wavelet transforms of the process Y, indexed 
by TO and k. To see that, let us fix j E N and set TO = 2j and 
tl = 2j, so that ti = 2j i, for all i E N. With this choice on 
the sequence of times, it is not difficult to construct a function 
'IjJ( s) such that 

dk,j := d(2
j
,p,k) = (Y;'l/Jk,j) 

with 'l/Jk,j(S):= T
j
'l/J(TJ S - k). 

An easy check shows that the function 'IjJ( s) 
I ,,",P i pvp L.., i= I 'IjJ (s) , where 

'ljJi(S) := � (I[HP,H2P](S) - I[i,Hp] (s)) 

(9) 

(lO) 
satisfies Eq. (9). Notice also that the components 'ljJi, i = 
1, ... p, of 'IjJ are suitably translated and re-normalized Haar 
functions. In the case p = 1, corresponding to the classical 
Allan variance, the function 'IjJ is exactly given by the Haar 
mother wavelet, as already pointed out in [l3]. 

Although the MAVAR can be related to the above Haar-type 
function family, we will show that the MAVAR and wavelets 
log-regression estimators do not match, as the regression runs 
on different parameters. For the wavelet-based estimators p is 
fixed and the regression parameter is j (related to TO), while 
for the MAVAR estimator (see Eq. (14)) the regression is on 
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P with TO fixed. Because of this difference, it is not possible 
to apply the results available in the wavelets framework [14], [15], [16]. 
C. The MAVAR log-regression estimator 

As proven in [12], applying the covariance formula (2) we 
get, for H E (1/2 , 1), 

where 

I 2 2 2H-2K(H)1 2 2H-20 ( -1) CTp,TO -CTHT ::; CTHT H P , (11) 

22H+4 + 22H+3 _ 32H+2 _ 15 
K(H) := 2(2H + 1)(2H + 2) . (12) 

This asymptotic relation suggests the following estimation 
method for the parameter H. 

Let n be the sample size, i.e. the number of the observations, 
choose p, lEN and an increasing sequence {ae} eEN such that 
1 :s; pal:S; Pmax(n) = In/3J. Let 1Q = (wo, ... ,Wl) be a 
vector of weights satisfying the conditions 

l 

Lwe = 0 and 
e=o 

l 

L We log(ae) = 1 .  
e=o 

(13) 
The MAVAR log-regression estimator associated to the weights 
1Q is defined as 

l 

/in := Lwelog(&�£ij'To(n)) (14) 
e=o 

Roughly speaking, the idea behind this definition is to use the 
approximation &�ep,To (n) � (T�ep,To (n) in order to get, by (11) 
and (13), 

l 

/in � L We 10g((T�ep) 

e=o 

l 

� L We log ((T� (Toaep)'" K(H)) = f-L, 
e=o 

where f-L := 2H - 2. Thus, given the data Xl,' .. , Xn the 
following procedure is used to estimate H: 

• compute the modified Allan variance by (6) for integer 
values aeP, with 1 :s; aeP :s; Pmax (n) = l n /3 J ; 

• compute the weighted MAVAR log-regression estimator 
by (14) in order to get an estimate /i of f-L; 

• estimate H by H = (/i + 2)/2. 

Apart from the general notation, that gives freedom in choos­
ing the increasing sequence {adeEN and the weights vector iU, 
the above procedure corresponds to that proposed in [8], [9] 
and is analogous to others based on log-regression estimations. 

I V. ASY MPTOTIC NORMALIT Y OF THE EST IMATOR 

In [12], under the assumption that X is a fractional Brow­

nian motion with Hurst index H E (1/2,1), two convergence 
results are proven in order to justify the above approximations 
and to get the rate of convergence of /in toward f-L = 2H -2. 

In particular, it is shown that if p = p( n) is a sequence 
of integers such that p( n) -+ +00, np( n) -1 -+ +00 and 
np( n) -3 -+ 0 as n -+ +00, then (for a fixed l) 

with 

Pn(W, H)
-l (/in -f-L) � N(O,1) (15) n-++oo 

Pn (W, H) rv c(W, H) rt --+ 0 ,  V; n-++oo 
where c(W, H) is a suitable constant depending on w and H. 
Two important consequences of (15) are the following: 1) The MAVAR log-regression estimator is consistent, i.e. 

the bias (/in -f-L) converges in yrobability to zero. 2) Given an estimate of H, say H, and the corresponding 
estimate of the normalizing coefficients Pn (w, H), we get 
the asymptotic confidence interval for the parameter H: 

� Pn(W, H) � Pn(W, H) H -q1-{3/2 2 ::; H ::; H + ql-{3/2 2 (16) 

where ql-(3/2 is the (1 - ,B/2)-quantile of the standard 
normal distribution. The length of the confidence interval 
is Ql-(3/2Pn(W, H). 

The coefficient P; (1Q, H) can be approximated by the follow­
ing quantity (see [12]) 

1 acv£, WCWC' 
l l ( ) 2H+2 

K(H)2 LL aCM' ncnc' x 
c=o£'=o 

neve>-lnel\e>-l ( k k' 1 I ) "" "" - ac - ac' x � � <PH --pacv£' ' acvc' k=O k'=O 

(17) 

with K(H) given in (12), £ V £' = max{£, £'}, £ 1\ £' 
min{ £, £'}, ne := n - 3aeP + 1 and 

<PH(X,y) := l [rH(x,O,r)'''YH(O,y,r)x 

x [Try;) I'H(X, 0, VhH(O, y,V)dV] dr. 

with 

I'H(X,y,V) := [(H + 1/2)r(H + 1/2)CTH]-1 

{ [ +jH+l/2 [ +jH+1/2 
(x+ 3(I-y)-v) -3 (x+ 2(I-y)-v) + 

+3 [(x + (1-y) -V)+t+l/2 -[(x -v)+t+1/2} 

V. WEI GHTS 

The explicit expression of the weights clearly depends on 
the sequence {ad. In our investigation we considered the 
linear progression, ae = 1 +£, and the geometrical progression, 
ae = r

e with r > 1 . The latter has provided the better 
numerical results which are then presented in the next section. 
Here we focus on the geometrical progression sequence and 
we give explicit formulas for three particular weights vectors, 
with increasing complexity, as proposed in the literature for 
the log-regression procedure. 

• The simple linear regression (SLR) weights are defined 
as 

SLR (e -m(R)) 
Wc .- ----'-�

-
.:.....:...'---

-

...". 

log(r) ��=o (R - m(R)) 2 
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with 
l -

- - 1 ", I! m(I!):= (I! + 1)- D I! ="2 
f=O 

• Following Abry and Veitch [l3], we can define the AV 
weights 

where 
",l I! -f 

(l) '= 6f=0 r m . f . 
�f=O r-f 

• Following Fay, Moulines, Roueff and Taqqu [19], we can 
compute a preliminary estimate, say H(1), of H (for 
instance, applying the first or the second method) and 
then use it in order to define the FMRT weights 

where 

W
FMRT := _1_ D-1 B(BT D-1 B)-lb - log(r) -

Q:= 
(�) 

B:= G 1 
1 

and D = D(n, fj(l») is the symmetric matrix with entries 
(for a generic H) 

V I. NUMER ICAL RESULTS 

In this section we present some numerical results that 
provide the (approximated) variance of the MAVAR estimator, 
p;" (1Q, H), and the relative confidence intervals for the three 
different weights listed above (SLR, AV, FMRT). The numer­
ical evaluations have been realized for different choices on 
the parameters, and the most interesting results are presented, 
with comments, in the next figures and tables. 

The variance of the MAVAR estimator is almost unchanged 
with H as shown in Fig. 1, thus for our analysis we used a 
fixed H = 0.7 to reduce the parameters space. We have first 
investigated the behavior of p;" (1Q, H) as a function of n with p 
following a geometrical growth pre, for 0 ::; e ::; l. In order to 
satisfy the hypotheses which are behind convergence (15), the 
value of p has been chosen as p = p( n) = l nO J with <5 = 0.35 
(formally, any value of <5 E (1/3,1) is admissible, but the best 
results are obtained for <5 close to 1/3). We used two distinct 
values for the parameter r of the geometrical progression, r = 
1. 1 and r = 2, and for each of them we fixed a value l with 
the only restriction that pre ::; In/3J. 

In Fig. 2 we plot the results for r = 1. 1 and l = 30. 
Each marker is associated to one of the three weights (SLR, 
AV and FMRT) of the previous section as listed in the 
legend. The lines with markers show the results obtained by 
numerical evaluation of (17), while the dashed lines represent 
the corresponding theoretical asymptotes no-1 = n-O.65 (see 

I � N C a. 
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H 

Figure 1. Trend of P; (:JQ, H) as a function of the Hurst parameter H, with 
SLR, AV and FMRT weights and geometrical progression p = prf, p = ln5 J 
with 0 = 0.35, r = 2 and n = 4096. 

n 

Figure 2. Trend of P; (:JQ, H) as a function of n, with SLR, AV and FMRT 
weights al1d geometrical progression p = prf, p = ln5J with 0 = 0.35, 
r = 1.1, C = 30 and H = 0.7. 

Eq. (15». 
Using the same notation, in Fig. 3 we plot the results for r = 2 
and taking l = 4. 
The two figures show that the approximation formula (17) for 
the variance P;"(1Q, H), that we have used for the numerical 
evaluation, provides results which are in quite good agreement 
with the theoretical behavior (dashed line), independently on 
the choice on the weights and on the other parameters. In 
particular, for n sufficiently large, we get very small values of 
p;" (1Q, H) and thus small confidence intervals. 

In tables I and II, we list the value of the confidence intervals 
related to Fig. 2, namely for r = 1. 1 and, respectively, l = 30 
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n 

Figure 3. Trend of P;,('!!l., H) as a function of n, with SLR, AV and FMRT 
weights and geometrical progression p = prt, p = l n5 J with 0 = 0.35, 
r = 2, C = 4 and H = 0.7. 

Table I 
LENGTH OF THE CONFIDENCE INTERVAL AS A FUNCTION OF n, WITH 

SLR, AV AND FMRT WEIGHTS AND GEOMETRICAL PROGRESSION 
P = prt, p = ln5J WITH 0 = 0.35, r = 1.1, C = 30 AND H = 0.7. 

n 3200 4096 6400 12800 25600 
p 16 18 2 1  27 34 

1.96Pn(WSLR, H) 0.3442 0.3 197 0.27 16 0.2 14 1 0. 1680 
1.96Pn(WAV,H) 0.2796 0.2605 0.2227 0. 1765 0. 139 1 

1. 96Pn (WFM RT, H) 0.2253 0.2 10 1 0. 1798 0. 1427 0. 1 124 

weight; 
• the value of P; (1Q, H) is also sensitive of l and in 

particular, for r = 1. 1, the value l = 45 provides better 
results for the AV and FMRT weights, while l = 30 
provides better results for the SLR weights. 

This last point suggests us to investigate the effect of an 
increase of l over p;(1Q, H). We thus evaluate the variance 
as a function of l, taking fixed n = 4096, H = 0.7, and 
r = 1. 1. The trend is shown in Fig. 4 and Table I V  lists the 
related confidence intervals. As one can see, with SLR weights 
there exists an optimal choice of l (approximately 20 in this 
setting), with the AV weights P; (1Q, H) decreases untill = 40 
and then slightly increases, while with the FMRT weights it 
keeps decreasing with l. 

10-1,-------,--------,--------,--------,-------, 

-e-SLR 
-AV 
........... FMRT 

PSfrag replacements 
and l = 45. In Table III we list the value of the confidence l 
intervals related to Fig. 3, namely for r = 2 and l = 4. 

10-2L---'-------'----=====�==�� 
o 10 20 30 40 50 

xelle 

Comparing the results displayed in tables I-III, as rand l 
vary, we can deduce that 

• the best (smallest) value of P; (1Q, H) is obtained at r = 2 
for the SLR and AV weights, and at r = 1. 1 for the FMRT 

Table II 
LENGTH OF THE CONFIDENCE INTERVAL AS A FUNCTION OF n, WITH 

SLR, AV AND FMRT WEIGHTS AND GEOMETRICAL PROGRESSION 
P = prt, p = l n5 J WITH 0 = 0.35, r = 1.1, C = 45 AND H = 0.7. 

n 4096 8192 16384 
p 18 23 29 

1.96pn(WSLR, H) 0.460 1 0.3263 0.2425 
1.96pn(WAV, H) 0.2562 0. 1955 0. 1509 

1.96pn(WFM RT, H) 0.2005 0. 1564 0. 1220 

Table III 
LENGTH OF THE CONFIDENCE INTERVAL AS A FUNCTION OF n, WITH 

SLR, AV AND FMRT WEIGHTS AND GEOMETRICAL PROGRESSION 
P = prt, p = ln5J WITH 0 = 0.35, r = 2, C = 4 AND H = 0.7. 

n 4096 8192 16384 
p 18 23 29 

1. 96Pn (WSLR, H) 0.2978 0.2315 0. 1807 
1. 96Pn (WAV, H) 0.2312 0. 1818 0. 1429 

1. 96Pn (WFM RT, H) 0.2 180 0. 1718 0. 1352 

Figure 4. Trend of p; ('!!l., H) as a function of C, with SLR, AV and FMRT 
weights and geometrical progression p = prt. Here n = 4096, P = 18, 
r = 1.1 and H = 0.7. 

Table IV 
LENGTH OF THE CONFIDENCE INTERVAL AS A FUNCTION OF C, WITH SLR, 

AV AND FMRT WEIGHTS AND GEOMETRICAL PROGRESSION P = prt, 
p = 18, n = 4096, r = 1.1 AND H = 0.7. 

R- IO 20 30 40 45 
1. 96Pn (WSLR, H) 0.3197 0.3068 0.3 19 1 0.3826 0.4605 
1.96Pn(WAV,H) 0.3136 0.2820 0.2600 0.2533 0.2568 

1.96Pn(WFMRT, H) 0.2799 0.2302 0.2093 0.20 18 0.20 1 1  

V II. CONCLUSION 

In this paper, we analyzed the behavior of the Modified Al­
lan Variance (MAVAR) in estimating the Hurst parameter H of 
LRD traffic series. We have first provided a new representation 
of the MAVAR log-regression estimator that allows to put it 
in connection with the wavelet log-regression estimator, and 
to stress the analogies and the differences between the two. 

Under the assumption that the signal process is a frac­
tional Brownian motion, the asymptotic analysis given in [l2l 
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applies and the MAVAR log-regression estimator turns out 
to be consistent and asymptotically normal distributed. Here 
we have provided, under the same hypotheses, new explicit 
expressions for the normalizing coefficients and detected their 
asymptotic behavior. These expressions have been used to 
obtain an explicit formula for the confidence intervals of the 
estimator. 

All these formulas have been computed numerically taking 
into account different values parameters, such as the size 
of the traffic series, the value of the Hurst parameter, as 
well as the weight coefficients of the regression procedure. 
In particular we have considered three different regression 
weights commonly proposed in the literature, and compared 
the related estimator performance as the other parameters 
varies. 

The numerical results show, on one hand, that the predicted 
asymptotic behavior provides an accurate approximation of the 
behavior of the estimator at finite sample. On the other hand, 
they provide a reference for the confidence intervals of the 
MAVAR log-regression estimator, as the length of the time 
series under consideration varies. 
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