Hash Functions

Abstract

This section introduces the properties and applications of hash
functions in cryptography. The main characteristics of the family of
Secure Hash Algorithms (SHA) are outlined. The so-called Birthday
Paradox and its application to finding hash collisions are explained.

Stefano Bregni

Outline

@ Hash Functions
@ The Secure Hash Algorithm (SHA)
@ The Birthday Paradox

Hash Functions Stefano Bregni
2

Hash Functions

a A cryptographic hash function
+ takes as input a message of arbitrary length (e.g., a few kB or MB)

+ produces as output a message digest of fixed length (e.g., 160 bit)

@ Properties of a hash function h(m)
+ 1. given a message m, its digest h(m) can be computed quickly

+ 2. h(m) is a one-way (or pre-image resistant) function:
given a y, it is computationally infeasible to find any m' with h(m") =y
— if y is the hash of some message m, the aim is not at finding the original m,
but any such m'with h(m') =y
— any hash function y = h(m) is not invertible, as there are infinite messages m
that yield y = h(m), but only some functions are one-way (in the sense above)
— example:
2160 possible hash values y of length 160 bit
281921 possible messages m of length up to 10 kByte
281761 messages m of length up to 10 kByte for each single y

Hash Functions Stefano Bregni

3

Hash Functions

@ Further properties of a hash function h(m)

+ 3. h(m) is a strongly collision-free function:
it is computationally infeasible to find any two different messages
m, and m, with h(m,) = h(m,) (m, # m,)

— since the set of possible messages m is infinite, it is expected that there are
many pairs of messages m, and m, with h(m,) = h(m,), but, for a strongly
collision-free function h(m), it is practically impossible to find any of them

* 4. h(m) is a weakly collision-free (a.k.a. second pre-image resistant)
function:
given m, it is computationally infeasible to find any other m' #m with
h(m') = h(m)

— weakly collision-free resistance is easier to satisfy than strongly resistance

— strongly collision-free resistance = weakly collision-free resistance

— strongly collision-free resistance £ weakly collision-free resistance

Hash Functions Stefano Bregni
4

Applications of Hash Functions

a Digital signature

+ the hash of the message is signed, not the message itself
@ Message integrity

* hash used as an error detection code

@ Message integrity and authentication
» hash embedding a shared secret (symmetric key): HMAC

Hash Functions Stefano Bregni
5

Examples: Some Bad Hash Functions

@ y=h(x)=xmodn
+ invertible?
+ one-way?
+ collision-free?

@ y=h(x)=a*modp
+ invertible?
¢ one-way?
+ collision-free?

Hash Functions Stefano Bregni
6

Examples: Some Bad Hash Functions

@ y=h(x)=x?mod n, withn=pq
+ invertible?
+ one-way?
+ collision-free?
a y = h(x) = DES("000000...0") (DES encrypt with key K=x, with x<2%°)
+ invertible?
+ one-way?
+ collision-free?

Hash Functions Stefano Bregni
7

Outline

@ Hash Functions

a The Secure Hash Algorithm (SHA)
a The Birthday Paradox

Hash Functions Stefano Bregni
8

The Secure Hash Algorithms (SHA)

@ Families of hash functions developed by the NSA and given to NIST
+ SHA, or SHA-O (retronym), originally published in 1993 (160 bits)
+ revised as SHA-1 in 1995 (160 bits)

+ two families of SHA-2 published in 2001 (256 and 512 bits, with
respective truncated versions to 224 and 384 bits)

a SHA-3 selected after a public competition among non-NSA designers
in 2012 (same lengths as SHA-2: 224, 256, 384, 512 bits)

Output Size [bit] Block Size [bit] Max Message Size [bit]
SHA-0 160 512 264-1
SHA-1 160 512 264-1
SHA-2 256 256 512 2641
SHA-2 512 512 1024 21281
SHA-3 256 256 1088 unlimited
SHA-3 512 512 576 unlimited

Hash Functions Stefano Bregni

9

The SHA-1 Algorithm

@ The message m of length T bits is

+ padded with "1000....0" to make it 64 bits shorter than the next highest
multiple of 512 bits

+ padded with 64 bits encoding the message length L
+ divided in L blocks of fixed length 512 bits m=[m,, m,, ..., M,]

L=|T/512]+1

@ The L blocks m; are processed via a sequence of L subsequent
rounds

X,[=160 |m;|=512
X, =h(x,m,) j=1,2..,L
Xy = h(m)
a The last block X; is the final hash (SHA-1)

Hash Functions
10

Stefano Bregni

The SHA-1 Algorithm Details (1)

The SHA-1 Algorithm

1. XAY = bitwise “and”, which is bitwise multiplication mod 2, or bitwise 1. Start with a message m. Append bits, as specified in the
minimurm, . : . ,
text, to obtain a message y of the form y = my||maz] - - - ||me,
2. X VY = bitwise “or”, which is bitwise maximum. where each m; has 512 bits.
3. X @Y = bitwise addition mod 2. 2. Initialize Hy = 67452301, Ay = FFCDADR8Y9, Ho =
98BADCFE, Hy = 10325476, H; = C3D2E1F0.
4. =X ch t : . ’ ! .
changes 15 to 0s and 0 to 1s 3. For : =0 to L — 1, do the following:
5. X +Y = addition of X and Y mod 2%?, where X and Y are regarded
os integers mod 232, (a) Writem; = Wg||W|| - [|[Wis, where each W has 32 bits.
6. X +— r = shift of X to the left by r positions (and the beginning wraps (b) For t = 16 to 79, let W; = (Wi_3 @ Wi ® W4 ©
around to the end). Wi_1g) «— 1 ' ¢ - = -
=16

We also need the following functions:

(c) Let A=Hy, B=H,,C=Hy, D=H,3, F=H,.

(BAC)V ((~B)A D) if 0<t<19
_ BeCeoD fa0<t<39 d t =0to 79 4d] ; ion:
FBCD)=4 (BAC)V(BAD)V(CAD) ifd0<t<59 (&) ?Dr_ 4 0 %7 ' oBﬂg rouowgg B;?,ps 'r}(sugesfmg
BoaCeD f60<t<79 = (A« 5+ f(B,CD)+ E+ W, + Ki, E = D,

D=C,C=(B«30),B=A4, A=T.
Define constants Ko, ..., Kve as follows:
54827999 if 0<t<19 (e) I;t_H;I= go +HA1— Ifl =EH1 + 8B, H; = H, + C,
[, —) GEDOEBA1 if20<¢<39 a=Hz+ D, Hy=Hy+2
*~) BF1BBCDC if40 <t <59 .

CA62CID6 if60<t <79 4. Qutput Ho| H1||Hz|H3||Hy. This is the 160-bit hash value.

Hash Functions Stefano Bregni

11

The SHA-1 Algorithm Details (2)

X: 14| B|C|D|E A|B | C|D|E

. T L

L/ | +

T

I N 5] et

m——sl " FK. W fort:f0..19
; A ¢:{0..19] F— W
[Iad

m—-— K W fort:[20..39] it

n—— [K W, fort[40..59] A1 BlclplE

m— LK W fort:{60..79]

X..[A[B]C|DI|E

Hash Functions Stefano Bregni
12

Outline

@ Hash Functions
@ The Secure Hash Algorithm (SHA)

a The Birthday Paradox

Hash Functions Stefano Bregni
13

The Birthday Paradox

a With r= 20 persons in a room
+ the probability that at least 1 has my same birthday (N=365) is

P=1-(364/365)" =0.053
+ the probability that at least 2 have the same birthday (N=3695) is
P=1-(1-1/365)-(1-2/365)-----(1-19/365)= 0.411

1,00
0,90 -
0,80 -
0,70 ~
0,60 -
0,50 ~
0,40 -
0,30 -
0,20 A
0,10 -
0,00

@ Approximation for N objects
picked by r persons (N >> r)
Pl /2N

‘ r = YN to have P = 50%

P (at least 2 with same object)

r persons

Hash Functions Stefano Bregni
14

The Birthday Paradox
Application to Hash Collision Finding

a |et us consider two rooms, each with r persons. What is the

probability that at least one in the first room has the same birthday
(N=365) as at least one in the second room?

» general problem: 2 sets of r persons pick 1 object among N
Pel-e N
ﬂ again: r = YN to have P = 50%
a Birthday attack to digital signature

» two sets of r documents each, irrelevant variations of two documents (a
legit and a bogus one)

+ if |h|=60 bit, there are N=2%° possible hashes

+ if =230, the probability of having a pair of documents from the two sets
with same hash is ~50%

q same hash, same digital signature!

Hash Functions
15

Stefano Bregni

	Hash Functions
	Outline
	Hash Functions
	Hash Functions
	Applications of Hash Functions
	Examples: Some Bad Hash Functions
	Examples: Some Bad Hash Functions
	Outline
	The Secure Hash Algorithms (SHA)
	The SHA-1 Algorithm
	The SHA-1 Algorithm Details (1)
	The SHA-1 Algorithm Details (2)
	Outline
	The Birthday Paradox
	The Birthday Paradox�Application to Hash Collision Finding

